Do you want to publish a course? Click here

${S}^5$: The destruction of a bright dwarf galaxy as revealed by the chemistry of the Indus stellar stream

80   0   0.0 ( 0 )
 Added by Terese Hansen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently discovered Indus stellar stream exhibits a diverse chemical signature compared to what is found for most other streams due to the abundances of two outlier stars, Indus$_$0 and Indus$_$13. Indus$_$13, exhibits an extreme enhancement in rapid neutron-capture ($r$-)process elements with $mathrm{[Eu/Fe]} = +1.81$. It thus provides direct evidence of the accreted nature of $r$-process enhanced stars. In this paper we present a detailed chemical analysis of the neutron-capture elements in Indus$_$13, revealing the star to be slightly actinide poor. The other outlier, Indus$_0$, displays a globular cluster-like signature with high N, Na, and Al abundances, while the rest of the Indus stars show abundances compatible with a dwarf galaxy origin. Hence, Indus$_0$ provides the first chemical evidence of a fully disrupted dwarf containing a globular cluster. We use the chemical signature of the Indus stars to discuss the nature of the stream progenitor which was likely a chemically evolved system, with a mass somewhere in the range from Ursa Minor to Fornax.



rate research

Read More

145 - C. Codella , E. Bianchi , L. Podio 2021
Aims: The goal is to obtain a census of S-bearing species using interferometric images, towards SVS13-A, a Class I object associated with a hot corino rich in interstellar complex organic molecules. Methods: We used data at 3mm and 1.4mm obtained with IRAM-NOEMA in the framework of the Large Program SOLIS. Results: We imaged the spatial distribution of the line emission of 32SO, 34SO, C32}S, C34S, C33S, OCS, H2C32S, H2C34S, and NS. The low excitation (9 K) 32SO line is tracing the fast collimated jet driven by the nearby SVS13-B. Conversely, the rest of the lines are confined in the inner SVS13-A region, where complex organics have been previously imaged. The non-LTE LVG analysis of SO, SO2, and H2CS indicates a hot corino origin (60-120 au). Temperatures between 50 K and 300 K, and volume densities larger than 10^5 cm-3 have been derived. The abundances are in the following ranges: 0.3-6 10^-6 (CS), 7 10^-9} - 1 10^-7 (SO), 1-10 10^-7 (SO2), a few 10^-10 (H2CS and OCS), and 10^{-10} - 10^{-9}(NS). The N(NS)/N(NS^+) ratio is larger than 10, supporting that the NS^+ ion is mainly formed in the extended envelope. Conclusions: The [H2CS]/[H2CO] ratio increases with time (from Class 0 to Class II objects) by more than one order of magnitude. This suggests that [S]/[O] changes along the Sun-like star forming process. The estimate of the [S]/[H] budget in SVS13-A is 2%-17% of the Solar System value (1.8 10^-5), being consistent with what was previously measured towards Class 0 objects (1%-8%). This supports that the enrichment of the sulphuretted species with respect to dark clouds keeps constant from the Class 0 to the Class I stages of low-mass star formation. The present findings stress the importance of investigating the chemistry of star forming regions using large observational surveys as well as sampling regions on a Solar System scale.
The S2 stream is a kinematically cold stream that is plunging downwards through the Galactic disc. It may be part of a hotter and more diffuse structure called the Helmi stream. We present a multi-instrument chemical analysis of the stars in the metal-poor S2 stream using both high- and low-resolution spectroscopy, complemented with a re-analysis of the archival data to give a total sample of 62 S2 members. Our high-resolution program provides alpha-elements (C, Mg, Si, Ca and Ti), iron-peak elements (V, Cr, Mn, Fe, Ni), n-capture process elements (Sr, Ba) and other elements such as Li, Na, Al, and Sc for a subsample of S2 objects. We report coherent abundance patterns over a large metallicity spread (~1 dex) confirming that the S2 stream was produced by a disrupted dwarf galaxy. The combination of S2s $alpha$-elements displays a mildly decreasing trend with increasing metallicity which can be tentatively interpreted as a ``knee at [Fe/H]<-2. At the low metallicity end, the n-capture elements in S2 may be dominated by r-process production however several stars are Ba-enhanced, but unusually poor in Sr. Moreover, some of the low-[Fe/H] stars appear to be carbon-enhanced. We interpret the observed abundance patterns with the help of chemical evolution models that demonstrate the need for modest star-formation efficiency and low wind efficiency confirming that the progenitor of S2 was a primitive dwarf galaxy.
The tidal disruption of the Sagittarius dwarf galaxy has generated a spectacular stream of stars wrapping around the entire Galaxy. We use data from $Gaia$ and the H3 Stellar Spectroscopic Survey to identify 823 high-quality Sagittarius members based on their angular momenta. The H3 Survey is largely unbiased in metallicity, and so our sample of Sagittarius members is similarly unbiased. Stream stars span a wide range in [Fe/H] from $-0.2$ to $approx -3.0$, with a mean overall metallicity of $langle$[Fe/H]$rangle=-0.99$. We identify a strong metallicity-dependence to the kinematics of the stream members. At [Fe/H]$gt -0.8$ nearly all members belong to the well-known cold ($sigma_v lt 20$ km/s) leading and trailing arms. At intermediate metallicities ($-1.9 lt$[Fe/H]$lt -0.8$) a significant population (24$%$) emerges of stars that are kinematically offset from the cold arms. These stars also appear to have hotter kinematics. At the lowest metallicities ([Fe/H]$lesssim-2$), the majority of stars (69$%$) belong to this kinematically-offset diffuse population. Comparison to simulations suggests that the diffuse component was stripped from the Sagittarius progenitor at earlier epochs, and therefore resided at larger radius on average, compared to the colder metal-rich component. We speculate that this kinematically diffuse, low metallicity, population is the stellar halo of the Sagittarius progenitor system.
182 - Junhao Liu 2020
We present 1.3 mm ALMA dust polarization observations at a resolution of $sim$0.02 pc of three massive molecular clumps, MM1, MM4, and MM9, in the infrared dark cloud G28.34+0.06. With the sensitive and high-resolution continuum data, MM1 is resolved into a cluster of condensations. The magnetic field structure in each clump is revealed by the polarized emission. We found a trend of decreasing polarized emission fraction with increasing Stokes $I$ intensities in MM1 and MM4. Using the angular dispersion function method (a modified Davis-Chandrasekhar-Fermi method), the plane-of-sky magnetic field strength in two massive dense cores, MM1-Core1 and MM4-Core4, are estimated to be $sim$1.6 mG and $sim$0.32 mG, respectively. textbf{The ordered magnetic energy is found to be smaller than the turbulent energy in the two cores, while the total magnetic energy is found to be comparable to the turbulent energy.} The total virial parameters in MM1-Core1 and MM4-Core4 are calculated to be $sim$0.76 and $sim$0.37, respectively, suggesting that massive star formation does not start in equilibrium. Using the polarization-intensity gradient-local gravity method, we found that the local gravity is closely aligned with intensity gradient in the three clumps, and the magnetic field tends to be aligned with the local gravity in MM1 and MM4 except for regions near the emission peak, which suggests that the gravity plays a dominant role in regulating the gas collapse. Half of the outflows in MM4 and MM9 are found to be aligned within 10$^{circ}$ of the condensation-scale ($<$0.05 pc) magnetic field, indicating that the magnetic field could play an important role from condensation to disk scale in the early stage of massive star formation. We also found that the fragmentation in MM1-Core1 cannot be solely explained by thermal Jeans fragmentation or turbulent Jeans fragmentation.
Stellar streams produced from dwarf galaxies provide direct evidence of the hierarchical formation of the Milky Way. Here, we present the first comprehensive study of the LMS-1 stellar stream, that we detect by searching for wide streams in the Gaia EDR3 dataset using the STREAMFINDER algorithm. This stream was recently discovered by Yuan et al. (2020). We detect LMS-1 as a $60deg$ long stream to the north of the Galactic bulge, at a distance of $sim 20$ kpc from the Sun, together with additional components that suggest that the overall stream is completely wrapped around the inner Galaxy. Using spectroscopic measurements from LAMOST, SDSS and APOGEE, we infer that the stream is very metal poor (${rm langle [Fe/H]rangle =-2.1}$) with a significant metallicity dispersion ($sigma_{rm [Fe/H]}=0.4$), and it possesses a large radial velocity dispersion (${rm sigma_v=20 pm 4,km,s^{-1}}$). These estimates together imply that LMS-1 is a dwarf galaxy stream. The orbit of LMS-1 is close to polar, with an inclination of $75deg$ to the Galactic plane. Both the orbit and metallicity of LMS-1 are remarkably similar to the globular clusters NGC 5053, NGC 5024 and the stellar stream Indus. These findings make LMS-1 an important contributor to the stellar population of the inner Milky Way halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا