Optically induced persistent current in carbon nanotubes


Abstract in English

We demonstrate theoretically that an off-resonant circularly polarized electromagnetic field can induce a persistent current in carbon nanotubes, which corresponds to electron rotation about the nanotube axis. As a consequence, the nanotubes acquire magnetic moment along the axis, which depends on their crystal structure and can be detected in state-of-the-art measurements. This effect and related phenomena are analyzed within the developed Floquet theory describing the electronic properties of the nanotubes irradiated by the field.

Download