No Arabic abstract
Every synchronising permutation group is primitive and of one of three types: affine, almost simple, or diagonal. We exhibit the first known example of a synchronising diagonal type group. More precisely, we show that $mathrm{PSL}(2,q)times mathrm{PSL}(2,q)$ acting in its diagonal action on $mathrm{PSL}(2,q)$ is separating, and hence synchronising, for $q=13$ and $q=17$. Furthermore, we show that such groups are non-spreading for all prime powers $q$.
We show that the minimal base size $b(G)$ of a finite primitive permutation group $G$ of degree $n$ is at most $2 (log |G|/log n) + 24$. This bound is asymptotically best possible since there exists a sequence of primitive permutation groups $G$ of degrees $n$ such that $b(G) = lfloor 2 (log |G|/log n) rceil - 2$ and $b(G)$ is unbounded. As a corollary we show that a primitive permutation group of degree $n$ that does not contain the alternating group $mathrm{Alt}(n)$ has a base of size at most $max{sqrt{n} , 25}$.
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can study the Saxl graph $Sigma(G)$ of $G$, which has vertex set $Omega$ and two vertices are adjacent if they form a base. This is a vertex-transitive graph, which is conjectured to be connected with diameter at most $2$ when $G$ is primitive. In this paper, we combine probabilistic and computational methods to prove a strong form of this conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting, we also establish best possible lower bounds on the clique and independence numbers of $Sigma(G)$ and we determine the groups with a unique regular suborbit, which can be interpreted in terms of the valency of $Sigma(G)$.
We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits arise as the transformation groups (full groups) of Bratteli diagrams that preserve the cofinality of infinite paths in the diagram. Given a simple full group $G$ admitting only a finite number of ergodic measures on the path-space $X$ of the associated Bratteli digram, we prove that every non-Dirac ergodic invariant random subgroup of $G$ arises as the stabilizer distribution of the diagonal action on $X^n$ for some $ngeq 1$. As a corollary, we establish that every group character $chi$ of $G$ has the form $chi(g) = Prob(gin K)$, where $K$ is a conjugation-invariant random subgroup of $G$.
Let $q$ be a prime power and let $G$ be an absolutely irreducible subgroup of $GL_d(F)$, where $F$ is a finite field of the same characteristic as $F_q$, the field of $q$ elements. Assume that $G cong G(q)$, a quasisimple group of exceptional Lie type over $F_q$ which is neither a Suzuki nor a Ree group. We present a Las Vegas algorithm that constructs an isomorphism from $G$ to the standard copy of $G(q)$. If $G otcong {}^3 D_4(q)$ with $q$ even, then the algorithm runs in polynomial time, subject to the existence of a discrete log oracle.
This is the fourth one in a series of papers classifying the factorizations of almost simple groups with nonsolvable factors. In this paper we deal with orthogonal groups of minus type.