Do you want to publish a course? Click here

Cavity-immune features in the spectra of superradiant crossover laser pulses

63   0   0.0 ( 0 )
 Added by Mikkel Tang
 Publication date 2021
  fields Physics
and research's language is English
 Authors Mikkel Tang




Ask ChatGPT about the research

Lasing in the bad cavity regime has promising applications in precision metrology due to the reduced sensitivity to cavity noise. Here we investigate the spectral properties and phase behavior of pulsed lasing on the $^1$S$_0 - ^3$P$_1$ line of $^{88}$Sr in a mK thermal ensemble, as first described in arxiv:1903.12593. The system operates in a regime where the Doppler-broadened atomic transition linewidth is several times larger than the cavity linewidth. We find that by detuning the cavity resonance, the influence of the cavity noise on the peak lasing frequency can be eliminated to first order despite the system not being deep in the bad cavity regime. Experimental results are compared to a model based on a Tavis-Cummings Hamiltonian, which enables us to investigate the interplay between different thermal velocity classes as the underlying mechanism for the reduction in cavity noise. These velocity-dependent dynamics can occur in pulsed lasing and during the turn-on behavior of lasers in the superradiant crossover regime.



rate research

Read More

We describe numerically the ionization process induced by linearly and circularly polarized XUV attosecond laser pulses on an aligned atomic target, specifically, the excited state Ne$^*(1s^22s^22p^5[{}^2text{P}^text{o}_{1/2}]3s[^1text{P}^o])$. We compute the excited atomic state by applying the time-dependent restricted-active-space self-consistent field (TD-RASSCF) method to fully account for the electronic correlation. We find that correlation-assisted ionization channels can dominate over channels accessible without correlation. We also observe that the rotation of the photoelectron momentum distribution by circularly polarized laser pulses compared to the case of linear polarization can be explained in terms of differences in accessible ionization channels. This study shows that it is essential to include electron correlation effects to obtain an accurate description of the photoelectron emission dynamics from aligned excited states.
Probing an atomic resonance without disturbing it is an ubiquitous issue in physics. This problem is critical in high-accuracy spectroscopy or for the next generation of atomic optical clocks. Ultra-high resolution frequency metrology requires sophisticated interrogation schemes and robust protocols handling pulse length errors and residual frequency detuning offsets . This review reports recent progress and perspective in such schemes, using sequences of composite laser-pulses tailored in pulse duration, frequency and phase, inspired by NMR techniques and quantum information processing. After a short presentation of Rabi technique and NMR-like composite pulses allowing efficient compensation of electromagnetic field perturbations to achieve robust population transfers, composite laser-pulses are investigated within Ramseys method of separated oscillating fields in order to generate non-linear compensation of probe-induced frequency shifts. Laser-pulses protocols such as Hyper-Ramsey (HR), Modified Hyper-Ramsey (MHR), Generalized Hyper-Ramsey (GHR) and hybrid schemes are reviewed. These techniques provide excellent protection against both probe induced light-shift perturbations and laser intensity variations. More sophisticated schemes generating synthetic frequency-shifts are presented. They allow to reduce or completely eliminate imperfect correction of probe-induced frequency-shifts even in presence of decoherence due to the laser line-width. Finally, two universal protocols are presented which provide complete elimination of probe-induced frequency shifts in the general case where both decoherence and relaxation dissipation effects are present by using exact analytic expressions for phase-shifts and the clock frequency detuning. These techniques might be applied to atomic, molecular and nuclear frequency metrology, mass spectrometry as well as precision spectroscopy.
We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2$p$--3$d$ bound--bound transitions between the spin-orbit multiplets $^3$P$_{0,1,2}$ and $^3$D$_{1,2,3}$ of the transiently produced doubly charged Ne$^{2+}$ ion are revealed, with time-dependent spectral changes over a time-delay range of $(2.4pm0.3),text{fs}$. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the AC Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron-laser radiation when the phase-locked pump and probe pulses precisely overlap in time.
By analyzing ``exact theoretical results from solving the time-dependent Schrodinger equation of atoms in few-cycle laser pulses, we established the general conclusion that differential elastic scattering and photo-recombination cross sections of the target ion with {em free} electrons can be extracted accurately from laser-generated high-energy electron momentum spectra and high-order harmonic spectra, respectively. Since both electron scattering and photoionization (the inverse of photo-recombination) are the conventional means for interrogating the structure of atoms and molecules, this result shows that existing few-cycle infrared lasers can be implemented for ultrafast imaging of transient molecules with temporal resolution of a few femtoseconds.
138 - T. V. Liseykina , A. Macchi 2007
The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا