Do you want to publish a course? Click here

Quantum SL(2) and logarithmic vertex operator algebras at (p,1)-central charge

94   0   0.0 ( 0 )
 Added by Cris Negron
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a ribbon tensor equivalence between the representation category of small quantum SL(2), at parameter q=exp($pi$ i/p), and the representation category of the triplet vertex operator algebra at integral parameter p>1. We provide similar quantum group equivalences for representation categories associated to the Virasoro, and singlet vertex operator algebras at central charge c=1-6(p-1)^2/p. These results resolve a number of fundamental conjectures coming from studies of logarithmic CFTs in type A_1.



rate research

Read More

120 - Drazen Adamovic , Qing Wang 2021
We introduce a subalgebra $overline F$ of the Clifford vertex superalgebra ($bc$ system) which is completely reducible as a $L^{Vir} (-2,0)$-module, $C_2$-cofinite, but it is not conformal and it is not isomorphic to the symplectic fermion algebra $mathcal{SF}(1)$. We show that $mathcal{SF}(1)$ and $overline{F}$ are in an interesting duality, since $overline{F}$ can be equipped with the structure of a $mathcal{SF}(1)$-module and vice versa. Using the decomposition of $overline F$ and a free-field realization from arXiv:1711.11342, we decompose $L_k(mathfrak{osp}(1vert 2))$ at the critical level $k=-3/2$ as a module for $L_k(mathfrak{sl}(2))$. The decomposition of $L_k(mathfrak{osp}(1vert 2))$ is exactly the same as of the $N=4$ superconformal vertex algebra with central charge $c=-9$, denoted by $mathcal V^{(2)}$. Using the duality between $overline{F}$ and $mathcal{SF}(1)$, we prove that $L_k(mathfrak{osp}(1vert 2))$ and $mathcal V^{(2)}$ are in the duality of the same type. As an application, we construct and classify all irreducible $L_k(mathfrak{osp}(1vert 2))$-modules in the category $mathcal O$ and the category $mathcal R$ which includes relaxed highest weight modules. We also describe the structure of the parafermion algebra $N_{-3/2}(mathfrak{osp}(1vert 2))$ as a $N_{-3/2}(mathfrak{sl}(2))$-module. We extend this example, and for each $p ge 2$, we introduce a non-conformal vertex algebra $mathcal A^{(p)}_{new}$ and show that $mathcal A^{(p)}_{new} $ is isomorphic to the doublet vertex algebra as a module for the Virasoro algebra. We also construct the vertex algebra $ mathcal V^{(p)} _{new}$ which is isomorphic to the logarithmic vertex algebra $mathcal V^{(p)}$ as a module for $widehat{mathfrak{sl}}(2)$.
204 - Robert McRae 2021
We prove a general mirror duality theorem for a subalgebra $U$ of a simple vertex operator algebra $A$ and its coset $V=mathrm{Com}_A(U)$, under the assumption that $A$ is a semisimple $Uotimes V$-module. More specifically, we assume that $Acongbigoplus_{iin I} U_iotimes V_i$ as a $Uotimes V$-module, where the $U$-modules $U_i$ are simple and distinct and are objects of a semisimple braided ribbon category of $U$-modules, and the $V$-modules $V_i$ are semisimple and contained in a (not necessarily rigid) braided tensor category of $V$-modules. We also assume that $U$ and $V$ form a dual pair in $A$, so that $U$ is the coset $mathrm{Com}_A(V)$. Under these conditions, we show that there is a braid-reversing tensor equivalence $tau: mathcal{U}_Arightarrowmathcal{V}_A$, where $mathcal{U}_A$ is the semisimple category of $U$-modules with simple objects $U_i$, $iin I$, and $mathcal{V}_A$ is the category of $V$-modules whose objects are finite direct sums of the $V_i$. In particular, the $V$-modules $V_i$ are simple and distinct, and $mathcal{V}_A$ is a rigid tensor category.
92 - Robert McRae 2021
Let $V$ be an $mathbb{N}$-graded, simple, self-contragredient, $C_2$-cofinite vertex operator algebra. We show that if the $S$-transformation of the character of $V$ is a linear combination of characters of $V$-modules, then the category $mathcal{C}$ of grading-restricted generalized $V$-modules is a rigid tensor category. We further show, without any assumption on the character of $V$ but assuming that $mathcal{C}$ is rigid, that $mathcal{C}$ is a factorizable finite ribbon category, that is, a not-necessarily-semisimple modular tensor category. As a consequence, we show that if the Zhu algebra of $V$ is semisimple, then $mathcal{C}$ is semisimple and thus $V$ is rational. The proofs of these theorems use techniques and results from tensor categories together with the method of Moore-Seiberg and Huang for deriving identities of two-point genus-one correlation functions associated to $V$. We give two main applications. First, we prove the conjecture of Kac-Wakimoto and Arakawa that $C_2$-cofinite affine $W$-algebras obtained via quantum Drinfeld-Sokolov reduction of admissible-level affine vertex algebras are strongly rational. The proof uses the recent result of Arakawa and van Ekeren that such $W$-algebras have semisimple (Ramond twisted) Zhu algebras. Second, we use our rigidity results to reduce the coset rationality problem to the problem of $C_2$-cofiniteness for the coset. That is, given a vertex operator algebra inclusion $Uotimes Vhookrightarrow A$ with $A$, $U$ strongly rational and $U$, $V$ a pair of mutual commutant subalgebras in $A$, we show that $V$ is also strongly rational provided it is $C_2$-cofinite.
220 - Robert McRae , Jinwei Yang 2020
Let $mathcal{O}_c$ be the category of finite-length central-charge-$c$ modules for the Virasoro Lie algebra whose composition factors are irreducible quotients of reducible Verma modules. Recently, it has been shown that $mathcal{O}_c$ admits vertex algebraic tensor category structure for any $cinmathbb{C}$. Here, we determine the structure of this tensor category when $c=13-6p-6p^{-1}$ for an integer $p>1$. For such $c$, we prove that $mathcal{O}_{c}$ is rigid, and we construct projective covers of irreducible modules in a natural tensor subcategory $mathcal{O}_{c}^0$. We then compute all tensor products involving irreducible modules and their projective covers. Using these tensor product formulas, we show that $mathcal{O}_c$ has a semisimplification which, as an abelian category, is the Deligne product of two tensor subcategories that are tensor equivalent to the Kazhdan-Lusztig categories for affine $mathfrak{sl}_2$ at levels $-2+p^{pm 1}$. Next, as a straightforward consequence of the braided tensor category structure on $mathcal{O}_c$ together with the theory of vertex operator algebra extensions, we rederive known results for triplet vertex operator algebras $mathcal{W}(p)$, including rigidity, fusion rules, and construction of projective covers. Finally, we prove a recent conjecture of Negron that $mathcal{O}_c^0$ is braided tensor equivalent to the $PSL(2,mathbb{C})$-equivariantization of the category of $mathcal{W}(p)$-modules.
153 - C. Dong , W. Zhang 2007
The rational and C_2-cofinite simple vertex operator algebras whose effective central charges and the central charges c are equal and less than 1 are classified. Such a vertex operator algebra is zero if c<0 and C if c=0. If c>0, it is an extension of discrete Virasoro vertex operator algebra L(c_{p,q},0) by its irreducible modules. It is also proved that for any rational and C_2-cofinite simple vertex operator algebra whose effective central charge and central charge are equal, the vertex operator subalgebra generated by the Virasoro vector is simple.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا