No Arabic abstract
Massive black hole binaries are expected to provide the strongest gravitational wave signals for the Laser Interferometer Space Antenna (LISA), a space mission targeting $sim,$mHz frequencies. As a result of the technological challenges inherent in the missions design, implementation and long duration (4 yr nominal), the LISA data stream is expected to be affected by relatively long gaps where no data is collected (either because of hardware failures, or because of scheduled maintenance operations, such as re-pointing of the antennas toward the Earth). Depending on their mass, massive black hole binary signals may range from quasi-transient to very long lived, and it is unclear how data gaps will impact detection and parameter estimation of these sources. Here, we will explore this question by using state-of-the-art astrophysical models for the population of massive black hole binaries. We will investigate the potential detectability of MBHB signals by observing the effect of gaps on their signal-to-noise ratios. We will also assess the effect of the gaps on parameter estimation for these sources, using the Fisher Information Matrix formalism as well as full Bayesian analyses. Overall, we find that the effect of data gaps due to regular maintenance of the spacecraft is negligible, except for systems that coalesce within such a gap. The effect of unscheduled gaps, however, will probably be more significant than that of scheduled ones.
Stellar-mass black hole binaries (SBHBs), like those currently being detected with the ground-based gravitational-wave (GW) observatories LIGO and Virgo, are also an anticipated GW source for LISA. LISA will observe them during the early inspiral stage of evolution; some of them will chirp through the LISA band and reappear some time later in the band of $3^{rd}$ generation ground-based detectors. SBHBs could serve as laboratories for testing the theory of General Relativity and inferring the astrophysical properties of the underlying population. In this study, we assess LISAs ability to infer the parameters of those systems, a crucial first step in understanding and interpreting the observation of those binaries and their use in fundamental physics and astrophysics. We simulate LISA observations for several fiducial sources and perform a full Bayesian analysis. We demonstrate and explain degeneracies in the parameters of some systems. We show that the redshifted chirp mass and the sky location are always very well determined, with typical errors below $10^{-4}$ (fractional) and $0.4 {rm deg^2}$. The luminosity distance to the source is typically measured within $40-60%$, resulting in a measurement of the chirp mass in the source frame of $mathcal{O}(1 %)$. The error on the time to coalescence improves from $mathcal{O}(1 {rm day})$ to $mathcal{O}(30 {rm s})$ as we observe the systems closer to their merger. We introduce an augmented Fisher-matrix analysis which gives reliable predictions for the intrinsic parameters compared to the full Bayesian analysis. Finally, we show that combining the use of the long-wavelength approximation for the LISA instrumental response together with the introduction of a degradation function at high frequencies yields reliable results for the posterior distribution when used self-consistently, but not in the analysis of real LISA data.
We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q >= 1/10, and total masses 10^5 < M/M_{Sun} < 10^7. We compare the parameter uncertainties using the Fisher matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} = ~10^6, we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 10% can be localized to within O(1 arcmin).
The Laser Interferometer Space Antenna (LISA) is slated for launch in the early 2030s. A main target of the mission is massive black hole binaries that have an expected detection rate of $sim20$ yr$^{-1}$. We present a parameter estimation analysis for a variety of massive black hole binaries. This analysis is performed with a graphics processing unit (GPU) implementation comprising the phenomhm waveform with higher-order harmonic modes and aligned spins; a fast frequency-domain LISA detector response function; and a GPU-native likelihood computation. The computational performance achieved with the GPU is shown to be 500 times greater than with a similar CPU implementation, which allows us to analyze full noise-infused injections at a realistic Fourier bin width for the LISA mission in a tractable and efficient amount of time. With these fast likelihood computations, we study the effect of adding aligned spins to an analysis with higher-order modes by testing different configurations of spins in the injection, as well as the effect of varied and fixed spins during sampling. Within these tests, we examine three different binaries with varying mass ratios, redshifts, sky locations, and detector-frame total masses ranging over three orders of magnitude. We discuss varied correlations between the total masses and mass ratios; unique spin posteriors for the larger mass binaries; and the constraints on parameters when fixing spins during sampling, allowing us to compare to previous analyses that did not include aligned spins.
The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforces goal is to be able to quickly calculate the impact of any mission design changes on LISAs science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforces work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISAs parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
By listening to gravity in the low frequency band, between 0.1 mHz and 1 Hz, the future space-based gravitational-wave observatory LISA will be able to detect tens of thousands of astrophysical sources from cosmic dawn to the present. The detection and characterization of all resolvable sources is a challenge in itself, but LISA data analysis will be further complicated by interruptions occurring in the interferometric measurements. These interruptions will be due to various causes occurring at various rates, such as laser frequency switches, high-gain antenna re-pointing, orbit corrections, or even unplanned random events. Extracting long-lasting gravitational-wave signals from gapped data raises problems such as noise leakage and increased computational complexity. We address these issues by using Bayesian data augmentation, a method that reintroduces the missing data as auxiliary variables in the sampling of the posterior distribution of astrophysical parameters. This provides a statistically consistent way to handle gaps while improving the sampling efficiency and mitigating leakage effects. We apply the method to the estimation of galactic binaries parameters with different gap patterns, and we compare the results to the case of complete data.