Combining the ideas of Riesz $s$-energy and $log$-energy, we introduce the so-called $s,log^t$-energy. In this paper, we investigate the asymptotic behaviors for $N,t$ fixed and $s$ varying of minimal $N$-point $s,log^t$-energy constants and configurations of an infinite compact metric space of diameter less than $1$. In particular, we study certain continuity and differentiability properties of minimal $N$-point $s,log^t$-energy constants in the variable $s$ and we show that in the limits as $srightarrow infty$ and as $srightarrow s_0>0,$ minimal $N$-point $s,log^t$-energy configurations tend to an $N$-point best-packing configuration and a minimal $N$-point $s_0,log^t$-energy configuration, respectively. Furthermore, the optimality of $N$ distinct equally spaced points on circles in $mathbb{R}^2$ for some certain $s,log^t$ energy problems was proved.