Do you want to publish a course? Click here

An Optimal Estimator of Intrinsic Alignments for Star-forming Galaxies in IllustrisTNG Simulation

163   0   0.0 ( 0 )
 Added by Jingjing Shi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Emission line galaxies (ELGs), more generally star-forming galaxies, are valuable tracers of large-scale structure and therefore main targets of upcoming wide-area spectroscopic galaxy surveys. We propose a fixed-aperture shape estimator of each ELG for extracting the intrinsic alignment (IA) signal, and assess the performance of the method using image simulations of ELGs generated from the IllustrisTNG simulation including observational effects such as the sky background noise. We show that our method enables a significant detection of the IA power spectrum with the linear-scale coefficient $A_{rm IA}simeq (13$--$15)pm 3.0$ up to $z=2$, even from the small simulation volume $sim0.009,(h^{-1}{rm Gpc})^3$, in contrast to the null detection with the standard method. Thus the ELG IA signal, measured with our method, opens up opportunities to exploit cosmology and galaxy physics in high-redshift universe.



rate research

Read More

We present the 3-{it dimensional} intrinsic alignment power spectra between the projected 2d galaxy shape/spin and the 3d tidal field across $0.1<k/h{rm Mpc}^{-1}<60$ using cosmological hydrodynamical simulation, Illustris-TNG300, at redshifts ranging from $0.3$ to $2$. The shape-tidal field alignment increases with galaxy mass and the linear alignment coefficient $A_{rm IA}$, defined with respect to the primordial tidal field, is found to have weak redshift dependence. We also show a promising detection of the shape/spin-tidal field alignments for stellar mass limited samples and a weak or almost null signal for star-forming galaxies for the TNG300 volume, $sim 0.01~(h^{-1}{rm Gpc})^3$. We further study the morphology and environmental dependence of the intrinsic alignment power spectra. The shape of massive disk- and spheroid-galaxies tend to align with the tidal field. The spin of low mass disks (and spheroids at low redshifts) tend to be parallel with the tidal field, while the spin of massive spheroids and disks tend to be perpendicular to tidal field. The shape and spin of massive centrals align with the tidal field at both small and large scales. Satellites show a radial alignment within the one-halo term region, and low mass satellites have an intriguing alignment signal in the two-halo term region. We also forecast a feasibility to measure the intrinsic alignment power spectrum for spectroscopic and imaging surveys such as Subaru HSC/PFS and DESI. Our results thus suggest that galaxy intrinsic alignment can be used as a promising tool for constraining the galaxy formation models.
Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data is currently insufficient to provide constraints on the time evolution of intrinsic alignments, and hence existing models range from assuming that galaxies gain some primordial alignment at formation, to suggesting that they react instantaneously to tidal interactions with the large-scale structure. Using the cosmological hydrodynamical simulation Horizon-AGN, we measure the relative alignments between the major axes of galaxies and eigenvectors of the tidal field as a function of redshift. We focus on constraining the time evolution of the alignment of the main progenitors of massive $z=0$ elliptical galaxies, the main weak lensing contaminant at low redshift. We show that this population, which at $z=0$ has a stellar mass above $10^{10.4}$ M$_odot$, transitions from having no alignment with the tidal field at $z=3$, to a significant alignment by $z=1$. From $z=0.5$ they preserve their alignment at an approximately constant level until $z=0$. We find a mass-dependence of the alignment signal of elliptical progenitors, whereby ellipticals that are less massive today ($10^{10.4}<M/{rm M}_odot<10^{10.7}$) do not become aligned till later redshifts ($z<2$), compared to more massive counterparts. We also present an extended study of progenitor alignments in the parameter space of stellar mass and galaxy dynamics, the impact of shape definition and tidal field smoothing.
Intrinsic alignments (IA), correlations between the intrinsic shapes and orientations of galaxies on the sky, are both a significant systematic in weak lensing and a probe of the effect of large-scale structure on galactic structure and angular momentum. In the era of precision cosmology, it is thus especially important to model IA with high accuracy. Efforts to use cosmological perturbation theory to model the dependence of IA on the large-scale structure have thus far been relatively successful; however, extant models do not consistently account for time evolution. In particular, advection of galaxies due to peculiar velocities alters the impact of IA, because galaxy positions when observed are generally different from their positions at the epoch when IA is believed to be set. In this work, we evolve the galaxy IA from the time of galaxy formation to the time at which they are observed, including the effects of this advection, and show how this process naturally leads to a dependence of IA on the velocity shear. We calculate the galaxy-galaxy-IA bispectrum to tree level (in the linear matter density) in terms of the evolved IA coefficients. We then discuss the implications for weak lensing systematics as well as for studies of galaxy formation and evolution. We find that considering advection introduces nonlocality into the bispectrum, and that the degree of nonlocality represents the memory of a galaxys path from the time of its formation to the time of observation. We discuss how this result can be used to constrain the redshift at which IA is determined and provide Fisher estimation for the relevant measurements using the example of SDSS-BOSS.
We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS simulations as a function of galaxy separation and halo mass. The combination of these hydro-cosmological simulations enables us to span four orders of magnitude in halo mass ($10.7<log_{10}(M_{200}/[h^{-1}M_odot])<15$) and a large range of separations ($-1<log_{10}(r/[h^{-1}Mpc])< 2$). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. The orientation-direction alignment can remain significant up to ~100 Mpc, for galaxies hosted by the most massive haloes in our simulations. Galaxies hosted by more massive subhaloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axis of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, $epsilon_{g+}(r_{p})$, is in broad agreement with recent observations when only stars within the typical observable extent of a galaxy are used to define galaxy orientations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of the dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation will overestimate the impact of intrinsic alignments on weak lensing analyses.
The intrinsic alignments of galaxies, i.e., the correlation between galaxy shapes and their environment, are a major source of contamination for weak gravitational lensing surveys. Most studies of intrinsic alignments have so far focused on measuring and modelling the correlations of luminous red galaxies with galaxy positions or the filaments of the cosmic web. In this work, we investigate alignments around cosmic voids. We measure the intrinsic alignments of luminous red galaxies detected by the Sloan Digital Sky Survey around a sample of voids constructed from those same tracers and with radii in the ranges: $[20-30; 30-40; 40-50]$ $h^{-1}$ Mpc and in the redshift range $z=0.4-0.8$. We present fits to the measurements based on a linear model at large scales, and on a new model based on the void density profile inside the void and in its neighbourhood. We constrain the free scaling amplitude of our model at small scales, finding no significant alignment at $1sigma$ for either sample. We observe a deviation from the null hypothesis, at large scales, of 2$sigma$ for voids with radii between 20 and 30 $h^{-1}$ Mpc, and 1.5 $sigma$ for voids with radii between 30 and 40 $h^{-1}$ Mpc and constrain the amplitude of the model on these scales. We find no significant deviation at 1$sigma$ for larger voids. Our work is a first attempt at detecting intrinsic alignments around voids and provides a useful framework for their mitigation in future void lensing studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا