Do you want to publish a course? Click here

baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling Coordinated Agents

250   0   0.0 ( 0 )
 Added by Michael Alcorn
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In many multi-agent spatiotemporal systems, the agents are under the influence of shared, unobserved variables (e.g., the play a team is executing in a game of basketball). As a result, the trajectories of the agents are often statistically dependent at any given time step; however, almost universally, multi-agent models implicitly assume the agents trajectories are statistically independent at each time step. In this paper, we introduce baller2vec++, a multi-entity Transformer that can effectively model coordinated agents. Specifically, baller2vec++ applies a specially designed self-attention mask to a mixture of location and look-ahead trajectory sequences to learn the distributions of statistically dependent agent trajectories. We show that, unlike baller2vec (baller2vec++s predecessor), baller2vec++ can learn to emulate the behavior of perfectly coordinated agents in a simulated toy dataset. Additionally, when modeling the trajectories of professional basketball players, baller2vec++ outperforms baller2vec by a wide margin.



rate research

Read More

Multi-agent spatiotemporal modeling is a challenging task from both an algorithmic design and computational complexity perspective. Recent work has explored the efficacy of traditional deep sequential models in this domain, but these architectures are slow and cumbersome to train, particularly as model size increases. Further, prior attempts to model interactions between agents across time have limitations, such as imposing an order on the agents, or making assumptions about their relationships. In this paper, we introduce baller2vec, a multi-entity generalization of the standard Transformer that can, with minimal assumptions, simultaneously and efficiently integrate information across entities and time. We test the effectiveness of baller2vec for multi-agent spatiotemporal modeling by training it to perform two different basketball-related tasks: (1) simultaneously forecasting the trajectories of all players on the court and (2) forecasting the trajectory of the ball. Not only does baller2vec learn to perform these tasks well (outperforming a graph recurrent neural network with a similar number of parameters by a wide margin), it also appears to understand the game of basketball, encoding idiosyncratic qualities of players in its embeddings, and performing basketball-relevant functions with its attention heads.
94 - Shenao Zhang , Li Shen , Lei Han 2021
In multi-agent reinforcement learning, the behaviors that agents learn in a single Markov Game (MG) are typically confined to the given agent number (i.e., population size). Every single MG induced by varying population sizes may possess distinct optimal joint strategies and game-specific knowledge, which are modeled independently in modern multi-agent algorithms. In this work, we focus on creating agents that generalize across population-varying MGs. Instead of learning a unimodal policy, each agent learns a policy set that is formed by effective strategies across a variety of games. We propose Meta Representations for Agents (MRA) that explicitly models the game-common and game-specific strategic knowledge. By representing the policy sets with multi-modal latent policies, the common strategic knowledge and diverse strategic modes are discovered with an iterative optimization procedure. We prove that as an approximation to a constrained mutual information maximization objective, the learned policies can reach Nash Equilibrium in every evaluation MG under the assumption of Lipschitz game on a sufficiently large latent space. When deploying it at practical latent models with limited size, fast adaptation can be achieved by leveraging the first-order gradient information. Extensive experiments show the effectiveness of MRA on both training performance and generalization ability in hard and unseen games.
3D ultrasound (US) has become prevalent due to its rich spatial and diagnostic information not contained in 2D US. Moreover, 3D US can contain multiple standard planes (SPs) in one shot. Thus, automatically localizing SPs in 3D US has the potential to improve user-independence and scanning-efficiency. However, manual SP localization in 3D US is challenging because of the low image quality, huge search space and large anatomical variability. In this work, we propose a novel multi-agent reinforcement learning (MARL) framework to simultaneously localize multiple SPs in 3D US. Our contribution is four-fold. First, our proposed method is general and it can accurately localize multiple SPs in different challenging US datasets. Second, we equip the MARL system with a recurrent neural network (RNN) based collaborative module, which can strengthen the communication among agents and learn the spatial relationship among planes effectively. Third, we explore to adopt the neural architecture search (NAS) to automatically design the network architecture of both the agents and the collaborative module. Last, we believe we are the first to realize automatic SP localization in pelvic US volumes, and note that our approach can handle both normal and abnormal uterus cases. Extensively validated on two challenging datasets of the uterus and fetal brain, our proposed method achieves the average localization accuracy of 7.03 degrees/1.59mm and 9.75 degrees/1.19mm. Experimental results show that our light-weight MARL model has higher accuracy than state-of-the-art methods.
Value-based methods of multi-agent reinforcement learning (MARL), especially the value decomposition methods, have been demonstrated on a range of challenging cooperative tasks. However, current methods pay little attention to the interaction between agents, which is essential to teamwork in games or real life. This limits the efficiency of value-based MARL algorithms in the two aspects: collaborative exploration and value function estimation. In this paper, we propose a novel cooperative MARL algorithm named as interactive actor-critic~(IAC), which models the interaction of agents from the perspectives of policy and value function. On the policy side, a multi-agent joint stochastic policy is introduced by adopting a collaborative exploration module, which is trained by maximizing the entropy-regularized expected return. On the value side, we use the shared attention mechanism to estimate the value function of each agent, which takes the impact of the teammates into consideration. At the implementation level, we extend the value decomposition methods to continuous control tasks and evaluate IAC on benchmark tasks including classic control and multi-agent particle environments. Experimental results indicate that our method outperforms the state-of-the-art approaches and achieves better performance in terms of cooperation.
Many robotic applications require the agent to perform long-horizon tasks in partially observable environments. In such applications, decision making at any step can depend on observations received far in the past. Hence, being able to properly memorize and utilize the long-term history is crucial. In this work, we propose a novel memory-based policy, named Scene Memory Transformer (SMT). The proposed policy embeds and adds each observation to a memory and uses the attention mechanism to exploit spatio-temporal dependencies. This model is generic and can be efficiently trained with reinforcement learning over long episodes. On a range of visual navigation tasks, SMT demonstrates superior performance to existing reactive and memory-based policies by a margin.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا