No Arabic abstract
We derive a precise relation of poles of Eisenstein series associated to the cuspidal datum $chiotimessigma$ and lowest occurrence of theta lifts of a cuspidal automorphic representation $sigma$ of a unitary group, where $chi$ is conjugate self-dual character. We also give a refined result on non-vanishing of periods of Eisenstein series and first occurrence of theta lifts. This gives constraints on existence of $(chi,b)$-factors in the global $A$-parameter of $sigma$.
Following the idea of [GJS09] for orthogonal groups, we introduce a new family of period integrals for cuspidal automorphic representations $sigma$ of unitary groups and investigate their relation with the occurrence of a simple global Arthur parameter $(chi,b)$ in the global Arthur parameter $psi_sigma$ associated to $sigma$, by the endoscopic classification of Arthur ([Art13], [Mok13], [KMSW14]). The argument uses the theory of theta correspondence. This can be viewed as a part of the $(chi,b)$-theory outlined in [Jia14] and can be regarded as a refinement of the theory of theta correspondences and poles of certain $L$-functions, which was outlined in [Ral91].
We give constraints on existence of $(chi,b)$-factors in the global $A$-parameter of a genuine cuspidal automorphic representation $sigma$ of the metaplectic group in terms of the invariant, lowest occurrence index, of theta lifts to odd orthogonal groups. We also give a refined result that relates the invariant, first occurrence index, to non-vanishing of period integral of residue of Eisenstein series associated to the cuspidal datum $chiotimessigma$. This complements our previous results for symplectic groups.
In this paper, we introduce a new family of period integrals attached to irreducible cuspidal automorphic representations $sigma$ of symplectic groups $mathrm{Sp}_{2n}(mathbb{A})$, which detects the right-most pole of the $L$-function $L(s,sigmatimeschi)$ for some character $chi$ of $F^timesbackslashmathbb{A}^times$ of order at most $2$, and hence the occurrence of a simple global Arthur parameter $(chi,b)$ in the global Arthur parameter $psi$ attached to $sigma$. We also give a characterisation of first occurrences of theta correspondence by (regularised) period integrals of residues of certain Eisenstein series.
In this paper we analyze Fourier coefficients of automorphic forms on a finite cover $G$ of an adelic split simply-laced group. Let $pi$ be a minimal or next-to-minimal automorphic representation of $G$. We prove that any $etain pi$ is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro--Shalika formula for cusp forms on $GL_n$. We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient in terms of these Whittaker coefficients. A consequence of our results is the non-existence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for $G$ of type $D_5$ and $E_8$ with a view towards applications to scattering amplitudes in string theory.
In this paper, we study top Fourier coefficients of certain automorphic representations of $mathrm{GL}_n(mathbb{A})$. In particular, we prove a conjecture of Jiang on top Fourier coefficients of isobaric automorphic representations of $mathrm{GL}_n(mathbb{A})$ of form $$ Delta(tau_1, b_1) boxplus Delta(tau_2, b_2) boxplus cdots boxplus Delta(tau_r, b_r),, $$ where $Delta(tau_i,b_i)$s are Speh representations in the discrete spectrum of $mathrm{GL}_{a_ib_i}(mathbb{A})$ with $tau_i$s being unitary cuspidal representations of $mathrm{GL}_{a_i}(mathbb{A})$, and $n = sum_{i=1}^r a_ib_i$. Endoscopic lifting images of the discrete spectrum of classical groups form a special class of such representations. The result of this paper will facilitate the study of automorphic forms of classical groups occurring in the discrete spectrum.