Do you want to publish a course? Click here

LGD-GCN: Local and Global Disentangled Graph Convolutional Networks

327   0   0.0 ( 0 )
 Added by Jingwei Guo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Disentangled Graph Convolutional Network (DisenGCN) is an encouraging framework to disentangle the latent factors arising in a real-world graph. However, it relies on disentangling information heavily from a local range (i.e., a node and its 1-hop neighbors), while the local information in many cases can be uneven and incomplete, hindering the interpretabiliy power and model performance of DisenGCN. In this paper, we introduce a novel Local and Global Disentangled Graph Convolutional Network (LGD-GCN) to capture both local and global information for graph disentanglement. LGD-GCN performs a statistical mixture modeling to derive a factor-aware latent continuous space, and then constructs different structures w.r.t. different factors from the revealed space. In this way, the global factor-specific information can be efficiently and selectively encoded via a message passing along these built structures, strengthening the intra-factor consistency. We also propose a novel diversity promoting regularizer employed with the latent space modeling, to encourage inter-factor diversity. Evaluations of the proposed LGD-GCN on the synthetic and real-world datasets show a better interpretability and improved performance in node classification over the existing competitive models.

rate research

Read More

84 - Yimeng Min 2020
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features. This gave rise to extensive work in geometric deep learning, focusing on designing network architectures that ensure neuron activations conform to regularity patterns within the input graph. However, in most cases the graph structure is only accounted for by considering the similarity of activations between adjacent nodes, which limits the capabilities of such methods to discriminate between nodes in a graph. Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions. The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs, while the latter is introduced to clear the resulting features of high-frequency noise. We establish the advantages of the presented Scattering GCN with both theoretical results establishing the complementary benefits of scattering and GCN features, as well as experimental results showing the benefits of our method compared to leading graph neural networks for semi-supervised node classification, including the recently proposed GAT network that typically alleviates oversmoothing using graph attention mechanisms.
94 - Xiao Wang , Meiqi Zhu , Deyu Bo 2020
Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytics tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph with rich information. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. Our extensive experiments on benchmark data sets clearly show that AM-GCN extracts the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.
In this paper, we present GCN-Denoiser, a novel feature-preserving mesh denoising method based on graph convolutional networks (GCNs). Unlike previous learning-based mesh denoising methods that exploit hand-crafted or voxel-based representations for feature learning, our method explores the structure of a triangular mesh itself and introduces a graph representation followed by graph convolution operations in the dual space of triangles. We show such a graph representation naturally captures the geometry features while being lightweight for both training and inference. To facilitate effective feature learning, our network exploits both static and dynamic edge convolutions, which allow us to learn information from both the explicit mesh structure and potential implicit relations among unconnected neighbors. To better approximate an unknown noise function, we introduce a cascaded optimization paradigm to progressively regress the noise-free facet normals with multiple GCNs. GCN-Denoiser achieves the new state-of-the-art results in multiple noise datasets, including CAD models often containing sharp features and raw scan models with real noise captured from different devices. We also create a new dataset called PrintData containing 20 real scans with their corresponding ground-truth meshes for the research community. Our code and data are available in https://github.com/Jhonve/GCN-Denoiser.
Graph convolutional networks (GCNs) have been employed as a kind of significant tool on many graph-based applications recently. Inspired by convolutional neural networks (CNNs), GCNs generate the embeddings of nodes by aggregating the information of their neighbors layer by layer. However, the high computational and memory cost of GCNs due to the recursive neighborhood expansion across GCN layers makes it infeasible for training on large graphs. To tackle this issue, several sampling methods during the process of information aggregation have been proposed to train GCNs in a mini-batch Stochastic Gradient Descent (SGD) manner. Nevertheless, these sampling strategies sometimes bring concerns about insufficient information collection, which may hinder the learning performance in terms of accuracy and convergence. To tackle the dilemma between accuracy and efficiency, we propose to use aggregators with different granularities to gather neighborhood information in different layers. Then, a degree-based sampling strategy, which avoids the exponential complexity, is constructed for sampling a fixed number of nodes. Combining the above two mechanisms, the proposed model, named Mix-grained GCN (MG-GCN) achieves state-of-the-art performance in terms of accuracy, training speed, convergence speed, and memory cost through a comprehensive set of experiments on four commonly used benchmark datasets and a new Ethereum dataset.
153 - Yuhang Guo , Xiao Luo , Liang Chen 2021
Predicting DNA-protein binding is an important and classic problem in bioinformatics. Convolutional neural networks have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. However, none of the studies has utilized graph convolutional networks for motif inference. In this work, we propose to use graph convolutional networks for motif inference. We build a sequence k-mer graph for the whole dataset based on k-mer co-occurrence and k-mer sequence relationship and then learn DNA Graph Convolutional Network (DNA-GCN) for the whole dataset. Our DNA-GCN is initialized with a one-hot representation for all nodes, and it then jointly learns the embeddings for both k-mers and sequences, as supervised by the known labels of sequences. We evaluate our model on 50 datasets from ENCODE. DNA-GCN shows its competitive performance compared with the baseline model. Besides, we analyze our model and design several different architectures to help fit different datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا