No Arabic abstract
Current nonlinear optical materials face a conventional limitation on the tradeoff between band gap and birefringence, especially in the deep UV spectral region. To circumvent such a dilemma, we propose a general principle, a {pi}-conjugated confinement, to partially decouple the inter group {pi}-conjugated interactions with the separation of a non-{pi}-conjugated group so as to maximize the band gap in comparison with those of simple {pi}-conjugated salts, such as borates, carbonates. Meanwhile, to maintain a large optical anisotropy. We uncover that the {pi}-conjugated confinement is a shared structural feature for all the known DUV NLO materials with favorable properties (45 compounds), and thus, it provides an essential design criterion. Guided by this principle, the carbonophosphate is predicted theoretically for the first time as a promising DUV candidate system, Sr3Y[PO4][CO3]3 and Na3X[PO4][CO3] (X = Ba, Sr, Ca, Mg) exhibit an enhanced birefringence that is 3-24 times larger than that of the simple phosphate, as well as an increased band gap that is 0.2-1.7 eV wider than that of the simple carbonate. Especially, the shortest SHG output of Sr3Y[PO4][CO3]3 is at {lambda}PM = 181 nm, being the shortest one among phosphates to date.
Materials combining both a high refractive index and a wide band gap are of great interest for optoelectronic and sensor applications. However, these two properties are typically described by an inverse correlation with high refractive index appearing in small gap materials and vice-versa. Here, we conduct a first-principles high-throughput study on more than 4000 semiconductors (with a special focus on oxides). Our data confirm the general inverse trend between refractive index and band gap but interesting outliers are also identified. The data are then analyzed through a simple model involving two main descriptors: the average optical gap and the effective frequency. The former can be determined directly from the electronic structure of the compounds, but the latter cannot. This calls for further analysis in order to obtain a predictive model. Nonetheless, it turns out that the negative effect of a large band gap on the refractive index can counterbalanced in two ways: (i) by limiting the difference between the direct band gap and the average optical gap which can be realized by a narrow distribution in energy of the optical transitions and (ii) by increasing the effective frequency which can be achieved through either a high number of transitions from the top of the valence band to the bottom of the conduction or a high average probability for these transitions. Focusing on oxides, we use our data to investigate how the chemistry influences this inverse relationship and rationalize why certain classes of materials would perform better. Our findings can be used to search for new compounds in many optical applications both in the linear and non-linear regime (waveguides, optical modulators, laser, frequency converter, etc.).
Identification and design of defects in two-dimensional (2D) materials as promising single photon emitters (SPE) requires a deep understanding of underlying carrier recombination mechanisms. Yet, the dominant mechanism of carrier recombination at defects in 2D materials has not been well understood, and some outstanding questions remain: How do recombination processes at defects differ between 2D and 3D systems? What factors determine defects in 2D materials as excellent SPE at room temperature? In order to address these questions, we developed first-principles methods to accurately calculate the radiative and non-radiative recombination rates at defects in 2D materials, using h-BN as a prototypical example. We reveal the carrier recombination mechanism at defects in 2D materials being mostly dominated by defect-defect state recombination in contrast to defect-bulk state recombination in most 3D semiconductors. In particular, we disentangle the non-radiative recombination mechanism into key physical quantities: zero-phonon line (ZPL) and Huang-Rhys factor. At the end, we identified strain can effectively tune the electron-phonon coupling at defect centers and drastically change non-radiative recombination rates. Our theoretical development serves as a general platform for understanding carrier recombination at defects in 2D materials, while providing pathways for engineering of quantum efficiency of SPE.
Surface confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursors {pi} states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule-semiconductor devices.
We model a Kohn-Sham potential with a discontinuity at integer particle numbers derived from the GLLB approximation of Gritsenko et al. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the Kohn-Sham gaps to those obtained by accurate many-body perturbation theory based optimized potential methods. In addition, the resulting quasiparticle band gap is compared to experimental gaps. In the GLLB model potential, the exchange-correlation hole is modeled using a GGA energy density and the response of the hole to density variations is evaluated by using the common-denominator approximation and homogeneous electron gas based assumptions. In our modification, we have chosen the PBEsol potential as the GGA to model the exchange hole, and add a consistent correlation potential. The method is implemented in the GPAW code, which allows efficient parallelization to study large systems. A fair agreement for Kohn-Sham and the quasiparticle band gaps with semiconductors and other band gap materials is obtained with a potential which is as fast as GGA to calculate.
Organic molecular crystals are expected to feature appreciable electron-phonon interactions that influence their electronic properties at zero and finite temperature. In this work, we report first-principles calculations and an analysis of the electron-phonon self-energy in naphthalene crystals. We compute the zero-point renormalization and temperature dependence of the fundamental band gap, and the resulting scattering lifetimes of electronic states near the valence- and conduction-band edges employing density functional theory. Further, our calculated phonon renormalization of the $GW$-corrected quasiparticle band structure predicts a fundamental band gap of 5 eV for naphthalene at room temperature, in good agreement with experiments. From our calculated phonon-induced electron lifetimes, we obtain the temperature-dependent mobilities of electrons and holes in good agreement with experimental measurements at room temperatures. Finally, we show that an approximate energy self-consistent computational scheme for the electron-phonon self-energy leads to the prediction of strong satellite bands in the electronic band structure. We find that a single calculation of the self-energy can reproduce the self-consistent results of the band gap renormalization and electrical mobilities for naphthalene, provided that the on-the-mass-shell approximation is used, i.e., if the self-energy is evaluated at the bare eigenvalues.