Split spin factor algebras


Abstract in English

Motivated by Yabes classification of symmetric $2$-generated axial algebras of Monster type, we introduce a large class of algebras of Monster type $(alpha, frac{1}{2})$, generalising Yabes $mathrm{III}(alpha,frac{1}{2}, delta)$ family. Our algebras bear a striking similarity with Jordan spin factor algebras with the difference being that we asymmetrically split the identity as a sum of two idempotents. We investigate the properties of this algebra, including the existence of a Frobenius form and ideals. In the $2$-generated case, where our algebra is isomorphic to one of Yabes examples, we use our new viewpoint to identify the axet, that is, the closure of the two generating axes.

Download