We experimentally demonstrate that the next-nearest-neighbor(NNN)coupling in an array of waveguides can naturally be negative. To do so, dielectric zig-zag shaped waveguide arrays are fabricated with direct laser writing (DLW). By changing the angle of the zig-zag shape it is possible to tune between positive and negative ratios of nearest and next-nearest-neighbor coupling, which also allows to reduce the impact of the NNN-coupling to zero at the correct respective angle. We describe how the correct higher order coupling constants in tight-binding models can be derived, based on non-orthogonal coupled mode theory. We confirm the existence of negative NNN-couplings experimentally and show the improved accuracy of this refined tight-binding model. The negative NNN-coupling has a noticeable impact especially when higher order coupling terms can no longer be neglected. Our results are also of importance for other discrete systems in which the tight-binding model is often used.