No Arabic abstract
Fast radio bursts (FRBs) are extremely strong radio flares lasting several milliseconds, most of which come from unidentified objects at a cosmological distance. They can be apparently repeating or not. In this paper, we analyzed 18 repeaters and 12 non-repeating FRBs observed in the frequency bands of 400-800 MHz from CHIME. We investigated the distributions of FRB isotropic-equivalent radio luminosity, considering the K correction. Statistically, the luminosity distribution can be better fitted by Gaussian form than by power-law. Based on the above results, together with the observed FRB event rate, pulse duration, and radio luminosity, FRB origin models are evaluated and constrained such that the gamma-ray bursts (GRBs) may be excluded for the non-repeaters while magnetars or neutron stars (NSs) emitting the supergiant pulses are preferred for the repeaters. We also found the necessity of a small FRB emission beaming solid angle (about 0.1 sr) from magnetars that should be considered, and/or the FRB association with soft gamma-ray repeaters (SGRs) may lie at a low probability of about 10%. Finally, we discussed the uncertainty of FRB luminosity caused by the estimation of the distance that is inferred by the simple relation between the redshift and dispersion measure (DM).
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
We briefly review main observational properties of fast radio bursts (FRBs) and discuss two most popular hypothesis for the explanation of these enigmatic intense millisecond radio flashes. FRBs most probably originate on extragalactic distances, and their rate on the sky is about a few thousand per day with fluences above $sim$~1~Jy~ms (or with fluxes larger than few tenths of Jy). Two leading scenarios describing these events include strong flares of magnetars and supergiant pulses of young radio pulsars with large rotational energy losses, correspondingly. At the moment, it is impossible to choose between these models. However, new telescopes can help to solve the puzzle of FRBs in near future.
We discuss coherent free electron laser (FEL) operating during explosive reconnection events in magnetized pair plasma of magnetar magnetospheres. The model explains many salient features of Fast Radio Bursts/magnetars radio emission: temporal coincidence of radio and high energy bursts, high efficiency of conversion of plasma kinetic energy into coherent radiation, presence of variable, narrow-band emission features drifting down in frequency, high degree of linear polarization. The model relies on magnetar-specific drifting $e^pm$ plasma components (which generate wiggler field due to the development of the firehose instability) and the presence of reconnection-generated particle beam with mild Lorentz factor of $gamma_b sim$ few hundred.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
The repeating FRBs 180916.J0158 and 121102 are visible during periodically-occuring windows in time. We consider the constraints on internal magnetic fields and geometry if the cyclical behavior observed for FRB~180916.J0158 and FRB 121102 is due to precession of magnetars. In order to frustrate vortex line pinning we argue that internal magnetic fields must be stronger than about $10^{16}$ Gauss, which is large enough to prevent superconductivity in the core and destroy the crustal lattice structure. We conjecture that the magnetic field inside precessing magnetars has three components, (1) a dipole component with characteristic strength $sim 10^{14}$ Gauss; (2) a toroidal component with characteristic strength $sim 10^{15}-10^{16}$ Gauss which only occupies a modest fraction of the stellar volume; and (3) a disordered field with characteristic strength $sim 10^{16}$ Gauss. The disordered field is primarily responsible for permitting precession, which stops once this field component decays away, which we conjecture happens after $sim 1000$ years. Conceivably, as the disordered component damps bursting activity diminishes and eventually ceases. We model the quadrupolar magnetic distortion of the star, which is due to its ordered components primarily, as triaxial and very likely prolate. We address the question of whether or not the spin frequency ought to be detectable for precessing, bursting magnetars by constructing a specific model in which bursts happen randomly in time with random directions distributed in or between cones relative to a single symmetry axis. Within the context of these specific models, we find that there are precession geometries for which detecting the spin frequency is very unlikely.