Do you want to publish a course? Click here

X-ray polarimetry of the Crab nebula with PolarLight: polarization recovery after the glitch and a secular position angle variation

170   0   0.0 ( 0 )
 Added by Hua Feng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report follow-up observations of the Crab nebula with the PolarLight X-ray polarimeter, which revealed a possible variation in polarization associated with a pulsar glitch in 2019. The new observations confirm that the polarization has recovered roughly 100 days after the glitch. With the new observations, we find that the polarization angle (PA) measured with PolarLight from the total nebular emission has a difference of 18.0 +- 4.6 (deg) from that measured 42 years ago with OSO-8, indicating a secular evolution of polarization with either the Crab nebula or pulsar. The long-term variation in PA could be a result of multiple glitches in the history, magnetic reconnection or movement of synchrotron emitting structures in the nebula, or secular evolution of the pulsar magnetic geometry.



rate research

Read More

250 - B. Shaw , M. J. Keith , A. G. Lyne 2021
We present updated measurements of the Crab pulsar glitch of 2019 July 23 using a dataset of pulse arrival times spanning $sim$5 months. On MJD 58687, the pulsar underwent its seventh largest glitch observed to date, characterised by an instantaneous spin-up of $sim$1 $mu$Hz. Following the glitch the pulsars rotation frequency relaxed exponentially towards pre-glitch values over a timescale of approximately one week, resulting in a permanent frequency increment of $sim$0.5 $mu$Hz. Due to our semi-continuous monitoring of the Crab pulsar, we were able to partially resolve a fraction of the total spin-up. This delayed spin-up occurred exponentially over a timescale of $sim$18 hours. This is the sixth Crab pulsar glitch for which part of the initial rise was resolved in time and this phenomenon has not been observed in any other glitching pulsars, offering a unique opportunity to study the microphysical processes governing interactions between the neutron star interior and the crust.
We present broadband (3 -- 78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power-law in this energy band, spatially resolved spectroscopy of the nebula finds a break at $sim$9 keV in the spectral photon index of the torus structure with a steepening characterized by $DeltaGammasim0.25$. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power-law with break energy at $sim$12 keV and $DeltaGammasim0.27$. We present spectral maps of the inner 100as of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power-law with an index of $gamma = 0.094pm 0.018$, consistent with the predictions of Kennel and Coroniti (1984). The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a $gamma$-ray flare, but found no increase in flux in the 3 - 78 keV energy band.
The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 A.D. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core collapse SN. Intensive searches were made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that the SN1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core collapse SNe. In the X-rays, imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit to the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter onboard the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of <~ 1Mo for a wide range of assumed shell radius, size, and plasma temperature both in and out of the collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform ISM versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of <~ 0.03 cm-3 (Fe core) or <~ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 Mo yr-1 at 20 km s-1 for the wind environment.
100 - N. Bucciantini 2017
In this paper we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extra-galactic ones. Its spectral and polarization properties allow us to infer key informations on the particles distribution function and magnetic field geometry. In recent years our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric tecniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.
108 - Hua Feng , Hong Li , Xiangyun Long 2020
The Crab nebula is so far the only celestial object with a statistically significant detection in soft x-ray polarimetry, a window that has not been explored in astronomy since the 1970s. However, soft x-ray polarimetry is expected to be a sensitive probe of magnetic fields in high energy astrophysical objects including rotation-powered pulsars and pulsar wind nebulae. Here we report the re-detection of soft x-ray polarisation after 40 years from the Crab nebula and pulsar with PolarLight, a miniature polarimeter utilising a novel technique onboard a CubeSat. The polarisation fraction of the Crab in the on-pulse phases was observed to decrease after a glitch of the Crab pulsar on July 23, 2019, while that of the pure nebular emission remained constant within uncertainty. The phenomenon may have lasted about 100 days. If the association between the glitch and polarisation change can be confirmed with future observations, it will place strong constraints on the physical mechanism of the high energy emission and glitch of pulsars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا