If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may be detectable in both direct-detection experiments and neutrino experiments. We report the results of a dedicated search for boosted dark matter upscattered by cosmic rays using the PROSPECT reactor antineutrino experiment. We show that such a flux of upscattered dark matter would display characteristic diurnal sidereal modulation, and use this to set new experimental constraints on sub-GeV dark matter exhibiting large interaction cross-sections.