Do you want to publish a course? Click here

Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2

99   0   0.0 ( 0 )
 Added by Jia-Tao Sun
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding Mott insulators and charge density waves (CDW) is critical for both fundamental physics and future device applications. However, the relationship between these two phenomena remains unclear, particularly in systems close to two-dimensional (2D) limit. In this study, we utilize scanning tunneling microscopy/spectroscopy to investigate monolayer 1T-NbSe2 to elucidate the energy of the Mott upper Hubbard band (UHB), and reveal that the spin-polarized UHB is spatially distributed away from the dz2 orbital at the center of the CDW unit. Moreover, the UHB shows a root3 x root3 R30{deg} periodicity in addition to the typically observed CDW pattern. Furthermore, a pattern similar to the CDW order is visible deep in the Mott gap, exhibiting CDW without contribution of the Mott Hubbard band. Based on these findings in monolayer 1T-NbSe2, we provide novel insights into the relation between the correlated and collective electronic structures in monolayer 2D systems.



rate research

Read More

Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist in a two-dimensional (2D) material. Here, through first-principles modeling and analysis, we identify a 2$times$2 charge density wave (CDW) phase in monolayer $2H$-NbSe$_2$ that harbors coexisting quantum spin Hall (QSH) insulator, topological crystalline insulator (TCI) and topological nodal line (TNL) semimetal states. The topology in monolayer NbSe$_2$ is driven by the formation of the CDW and the associated symmetry-breaking periodic lattice distortions and not via a pre-existing topology. Our finding of an emergent triple-topological state in monolayer $2H$-NbSe$_2$ will offer novel possibilities for exploring connections between different topologies and a unique materials platform for controllable CDW-induced topological states for potential applications in quantum electronics and spintronics and Majorana-based quantum computing.
142 - S. Hellmann , M. Beye , C. Sohrt 2010
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics in the charge-density-wave/Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1 ps, the system is driven across a phase transition from a long-range charge ordered state to a quasi-equilibrium state with domain-like short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic site selectivity.
100 - Feipeng Zheng , Ji Feng 2019
Monolayer 2H-NbSe2 has recently been shown to be a 2-dimensional superconductor, with a coexisting charge-density wave (CDW). As both phenomena are intimately related to electron-lattice interaction, a natural question is how superconductivity and CDW are interrelated through electron-phonon coupling (EPC), which is important to the understanding of 2-dimensional superconductivity. This work investigates the superconductivity of monolayer NbSe2 in CDW phase using the anisotropic Migdal-Eliashberg formalism based on first principles calculations. The mechanism of the competition between and coexistence of the superconductivity and CDW is studied in detail by analyzing EPC. It is found that the intra-pocket scattering is related to superconductivity, leading to almost constant value of superconducting gaps on parts of the Fermi surface. The inter-pocket scattering is found to be responsible for CDW, leading to partial or full bandgap on the remaining Fermi surface. Recent experiment indicates that there is transitioning from regular superconductivity in thin-film NbSe2 to two-gap superconductivity in the bulk, which is shown here to have its origin in the extent of Fermi surface gapping of K and K pockets induced by CDW. Overall blue shifts of the phonons and sharp decrease of Eliashberg spectrum are found when the CDW forms.
Mott state in 1T-TaS2 is predicted to host quantum spin liquids (QSL). However, its insulating mechanism is controversial due to complications from interlayer coupling. Here, we study the Mott state in monolayer 1T-NbSe2, an electronic analogy to TaS2 exempt from interlayer coupling, using spectroscopic imaging scanning tunneling microscopy and first principles calculations. Monolayer NbSe2 surprisingly displays two types of Star-of-David (SD) motifs with different Mott gap sizes, that are interconvertible via temperature variation. And, bilayer 1T-NbSe2 shows Mott collapse by interlayer coupling. Our calculation unveils the two types of SDs possess distinct structural distortions, altering the effective Coulomb energies of the central Nb orbital. Our calculation suggests the Mott gap, the same parameter for determining the QSL regime, is tunable with strain. This finding offers a general strategy for manipulating the Mott state in 1T-NbSe2 and related systems via structural distortions, which may be tuned into the potential QSL regime.
Monolayer group-V transition metal dichalcogenides in their 1T phase have recently emerged as a platform to investigate rich phases of matter, such as spin liquid and ferromagnetism, resulting from strong electron correlations. Although 1T phase NbSe2 does not occur naturally in bulk form, it has been discovered that the 1T and 1H phases can coexist when monolayer NbSe2 is grown via molecular beam epitaxy (MBE). This discovery has inspired theoretical investigations predicting collective phenomena such as ferromagnetism in two dimensions. Here, by controlling the MBE growth parameters, we demonstrate the successful growth of single-phase 1T-NbSe2. By combining scanning tunneling microscopy/spectroscopy and ab initio calculations, we show that this system is a charge-transfer insulator, with the upper Hubbard band located above the valence band maximum. Furthermore, by creating a vertical 1T/2H NbSe2 heterostructure, we find evidence of exchange interactions between the localized magnetic moments in 1T phase and the metallic/superconducting phase, as manifested by Kondo resonances and Yu-Shiba-Rusinov bound states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا