No Arabic abstract
In a conventional domain adaptation person Re-identification (Re-ID) task, both the training and test images in target domain are collected under the sunny weather. However, in reality, the pedestrians to be retrieved may be obtained under severe weather conditions such as hazy, dusty and snowing, etc. This paper proposes a novel Interference Suppression Model (ISM) to deal with the interference caused by the hazy weather in domain adaptation person Re-ID. A teacherstudent model is used in the ISM to distill the interference information at the feature level by reducing the discrepancy between the clear and the hazy intrinsic similarity matrix. Furthermore, in the distribution level, the extra discriminator is introduced to assist the student model make the interference feature distribution more clear. The experimental results show that the proposed method achieves the superior performance on two synthetic datasets than the stateof-the-art methods. The related code will be released online https://github.com/pangjian123/ISM-ReID.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domains knowledge to improve the models discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task, and we focus on explicitly modeling appropriate intermediate domains to characterize this bridging. Specifically, we propose an Intermediate Domain Module (IDM) to generate intermediate domains representations on-the-fly by mixing the source and target domains hidden representations using two domain factors. Based on the shortest geodesic path definition, i.e., the intermediate domains along the shortest geodesic path between the two extreme domains can play a better bridging role, we propose two properties that these intermediate domains should satisfy. To ensure these two properties to better characterize appropriate intermediate domains, we enforce the bridge losses on intermediate domains prediction space and feature space, and enforce a diversity loss on the two domain factors. The bridge losses aim at guiding the distribution of appropriate intermediate domains to keep the right distance to the source and target domains. The diversity loss serves as a regularization to prevent the generated intermediate domains from being over-fitting to either of the source and target domains. Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks, and the mAP gain is up to 7.7% on the challenging MSMT17 benchmark. Code is available at https://github.com/SikaStar/IDM.
This article studies the domain adaptation problem in person re-identification (re-ID) under a learning via translation framework, consisting of two components, 1) translating the labeled images from the source to the target domain in an unsupervised manner, 2) learning a re-ID model using the translated images. The objective is to preserve the underlying human identity information after image translation, so that translated images with labels are effective for feature learning on the target domain. To this end, we propose a similarity preserving generative adversarial network (SPGAN) and its end-to-end trainable version, eSPGAN. Both aiming at similarity preserving, SPGAN enforces this property by heuristic constraints, while eSPGAN does so by optimally facilitating the re-ID model learning. More specifically, SPGAN separately undertakes the two components in the learning via translation framework. It first preserves two types of unsupervised similarity, namely, self-similarity of an image before and after translation, and domain-dissimilarity of a translated source image and a target image. It then learns a re-ID model using existing networks. In comparison, eSPGAN seamlessly integrates image translation and re-ID model learning. During the end-to-end training of eSPGAN, re-ID learning guides image translation to preserve the underlying identity information of an image. Meanwhile, image translation improves re-ID learning by providing identity-preserving training samples of the target domain style. In the experiment, we show that identities of the fake images generated by SPGAN and eSPGAN are well preserved. Based on this, we report the new state-of-the-art domain adaptation results on two large-scale person re-ID datasets.
Cross-domain person re-identification (re-ID) is challenging due to the bias between training and testing domains. We observe that if backgrounds in the training and testing datasets are very different, it dramatically introduces difficulties to extract robust pedestrian features, and thus compromises the cross-domain person re-ID performance. In this paper, we formulate such problems as a background shift problem. A Suppression of Background Shift Generative Adversarial Network (SBSGAN) is proposed to generate images with suppressed backgrounds. Unlike simply removing backgrounds using binary masks, SBSGAN allows the generator to decide whether pixels should be preserved or suppressed to reduce segmentation errors caused by noisy foreground masks. Additionally, we take ID-related cues, such as vehicles and companions into consideration. With high-quality generated images, a Densely Associated 2-Stream (DA-2S) network is introduced with Inter Stream Densely Connection (ISDC) modules to strengthen the complementarity of the generated data and ID-related cues. The experiments show that the proposed method achieves competitive performance on three re-ID datasets, ie., Market-1501, DukeMTMC-reID, and CUHK03, under the cross-domain person re-ID scenario.
In recent years, supervised person re-identification (re-ID) models have received increasing studies. However, these models trained on the source domain always suffer dramatic performance drop when tested on an unseen domain. Existing methods are primary to use pseudo labels to alleviate this problem. One of the most successful approaches predicts neighbors of each unlabeled image and then uses them to train the model. Although the predicted neighbors are credible, they always miss some hard positive samples, which may hinder the model from discovering important discriminative information of the unlabeled domain. In this paper, to complement these low recall neighbor pseudo labels, we propose a joint learning framework to learn better feature embeddings via high precision neighbor pseudo labels and high recall group pseudo labels. The group pseudo labels are generated by transitively merging neighbors of different samples into a group to achieve higher recall. However, the merging operation may cause subgroups in the group due to imperfect neighbor predictions. To utilize these group pseudo labels properly, we propose using a similarity-aggregating loss to mitigate the influence of these subgroups by pulling the input sample towards the most similar embeddings. Extensive experiments on three large-scale datasets demonstrate that our method can achieve state-of-the-art performance under the unsupervised domain adaptation re-ID setting.