No Arabic abstract
The COVID-19 pandemic has been damaging to the lives of people all around the world. Accompanied by the pandemic is an infodemic, an abundant and uncontrolled spreading of potentially harmful misinformation. The infodemic may severely change the pandemics course by interfering with public health interventions such as wearing masks, social distancing, and vaccination. In particular, the impact of the infodemic on vaccination is critical because it holds the key to reverting to pre-pandemic normalcy. This paper presents findings from a global survey on the extent of worldwide exposure to the COVID-19 infodemic, assesses different populations susceptibility to false claims, and analyzes its association with vaccine acceptance. Based on responses gathered from over 18,400 individuals from 40 countries, we find a strong association between perceived believability of misinformation and vaccination hesitancy. Additionally, our study shows that only half of the online users exposed to rumors might have seen the fact-checked information. Moreover, depending on the country, between 6% and 37% of individuals considered these rumors believable. Our survey also shows that poorer regions are more susceptible to encountering and believing COVID-19 misinformation. We discuss implications of our findings on public campaigns that proactively spread accurate information to countries that are more susceptible to the infodemic. We also highlight fact-checking platforms role in better identifying and prioritizing claims that are perceived to be believable and have wide exposure. Our findings give insights into better handling of risk communication during the initial phase of a future pandemic.
The spreading COVID-19 misinformation over social media already draws the attention of many researchers. According to Google Scholar, about 26000 COVID-19 related misinformation studies have been published to date. Most of these studies focusing on 1) detect and/or 2) analysing the characteristics of COVID-19 related misinformation. However, the study of the social behaviours related to misinformation is often neglected. In this paper, we introduce a fine-grained annotated misinformation tweets dataset including social behaviours annotation (e.g. comment or question to the misinformation). The dataset not only allows social behaviours analysis but also suitable for both evidence-based or non-evidence-based misinformation classification task. In addition, we introduce leave claim out validation in our experiments and demonstrate the misinformation classification performance could be significantly different when applying to real-world unseen misinformation.
How information consumption affects behaviour is an open and widely debated research question. A popular hypothesis states that the so-called infodemic has a substantial impact on orienting individual decisions. A competing hypothesis stresses that exposure to vast amounts of even contradictory information has little effect on personal choices. The COVID-19 pandemic offered an opportunity to investigate this relationship, analysing the interplay between COVID-19 related information circulation and the propensity of users to get vaccinated. We analyse the vaccine infodemics on Twitter and Facebook by looking at 146M contents produced by 20M accounts between 1 January 2020 and 30 April 2021. We find that vaccine-related news triggered huge interest through social media, affecting attention patterns and the modality in which information was spreading. However, we observe that such a tumultuous information landscape translated only in minimal variations in overall vaccine acceptance as measured by Facebooks daily COVID-19 Trends and Impact Survey (previously known as COVID-19 World Symptoms Survey) on a sample of 1.6M users. Notably, the observation period includes the European Medicines Agency (EMA) investigations over blood clots cases potentially related to vaccinations, a series of events that could have eroded trust in vaccination campaigns. We conclude the paper by investigating the numerical correlation between various infodemics indices and vaccine acceptance, observing strong compatibility with a null model. This finding supports the hypothesis that altered information consumption patterns are not a reliable predictor of collective behavioural change. Instead, wider attention on social media seems to resolve in polarisation, with the vaccine-prone and the vaccine-hesitant maintaining their positions.
Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.
We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction numbers $R_0$ for each social media platform. Moreover, we characterize information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors amplification.
The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing number of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.