Do you want to publish a course? Click here

Bi-incomplete Tambara functors

94   0   0.0 ( 0 )
 Added by Michael Hill
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For an equivariant commutative ring spectrum $R$, $pi_0 R$ has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If $R$ is an $N_infty$ ring spectrum in the category of genuine $G$-spectra, then all possible additive transfers are present and $pi_0 R$ has the structure of an incomplete Tambara functor. However, if $R$ is an $N_infty$ ring spectrum in a category of incomplete $G$-spectra, the situation is more subtle. In this paper, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures.



rate research

Read More

Free algebras are always free as modules over the base ring in classical algebra. In equivariant algebra, free incomplete Tambara functors play the role of free algebras and Mackey functors play the role of modules. Surprisingly, free incomplete Tambara functors often fail to be free as Mackey functors. In this paper, we determine for all finite groups conditions under which a free incomplete Tambara functor is free as a Mackey functor. For solvable groups, we show that a free incomplete Tambara functor is flat as a Mackey functor precisely when these conditions hold. Our results imply that free incomplete Tambara functors are almost never flat as Mackey functors. However, we show that after suitable localizations, free incomplete Tambara functors are always free as Mackey functors.
67 - Tom Bachmann 2018
Let k be a field and denote by SH(k) the motivic stable homotopy category. Recall its full subcategory HI_0(k) of effective homotopy modules. Write NAlg(HI_0(k)) for the category of normed motivic spectra with underlying spectrum an effective homotopy module. In this article we provide an explicit description of NAlg(HI_0(k)) as the category of sheaves with generalized transfers and etale norms, and explain how this is closely related to the classical notion of Tambara functors.
The so called v{C}ech and Vietoris-Rips simplicial filtrations are designed to capture information about the topological structure of metric datasets. These filtrations are two of the workhorses in the field of topological data analysis. They enjoy stability with respect to the Gromov-Hausdorff (GH) distance, and this stability property allows us to estimate the GH distance between finite metric space representations of the underlying datasets. Via the concept of Gromovs curvature sets we construct a rich theoretical framework of valuation-induced stable filtration functors. This framework includes the v{C}ech and Vietoris-Rips filtration functors as well as many novel filtration functors that capture diverse features present in datasets. We further explore the concept of basepoint filtrations functors and use it to provide a classification of the filtration functors that we identify.
We define twisted Hochschild homology for Green functors. This construction is the algebraic analogue of the relative topological Hochschild homology $THH_{C_n}(-)$, and it describes the $E_2$ term of the Kunneth spectral sequence for relative $THH$. Applied to ordinary rings, we obtain new algebraic invariants. Extending Hesselholts construction of the Witt vectors of noncommutative rings, we interpret our construction as providing Witt vectors for Green functors.
123 - Tilman Bauer 2021
As an extension of previous ungraded work, we define a graded $p$-polar ring to be an analog of a graded commutative ring where multiplication is only allowed on $p$-tuples (instead of pairs) of elements of equal degree. We show that the free affine $p$-adic group scheme functor, as well as the free formal group functor, defined on $k$-algebras for a perfect field $k$ of characteristic $p$, factors through $p$-polar $k$-algebras. It follows that the same is true for any affine $p$-adic or formal group functor, in particular for the functor of $p$-typical Witt vectors. As an application, we show that the latter is free on the $p$-polar affine line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا