Do you want to publish a course? Click here

The nylon balloon for xenon loaded liquid scintillator in KamLAND-Zen 800 neutrinoless double-beta decay search experiment

120   0   0.0 ( 0 )
 Added by Yoshihito Gando
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The KamLAND-Zen 800 experiment is searching for the neutrinoless double-beta decay of $^{136}$Xe by using $^{136}$Xe-loaded liquid scintillator. The liquid scintillator is enclosed inside a balloon made of thin, transparent, low-radioactivity film that we call Inner Balloon (IB). The IB, apart from guaranteeing the liquid containment, also allows to minimize the background from cosmogenic muon-spallation products and $^{8}$B solar neutrinos. Indeed these events could contribute to the total counts in the region of interest around the Q-value of the double-beta decay of $^{136}$Xe. In this paper, we present an overview of the IB and describe the various steps of its commissioning minimizing the radioactive contaminations, from the material selection, to the fabrication of the balloon and its installation inside the KamLAND detector. Finally, we show the impact of the IB on the KamLAND background as measured by the KamLAND detector itself.



rate research

Read More

Environmental radioactivity is a dominant background for rare decay search experiments, and it is difficult to completely remove such an impurity from detector vessels. We propose a scintillation balloon as the active vessel of a liquid scintillator in order to identify this undesirable radioactivity. According to our feasibility studies, the scintillation balloon enables the bismuth--polonium sequential decay to be tagged with a 99.7% efficiency, assuming a KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector)-type liquid scintillator detector. This tagging of sequential decay using alpha-ray from the polonium improves the sensitivity to neutrinoless double-beta decay with rejecting beta-ray background from the bismuth.
The observation of neutrinoless double-beta decay (0${ u}{beta}{beta}$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of $sim$0.1 count /(FWHM$cdot$t$cdot$yr) in the region of the signal. The current generation $^{76}$Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0${ u}{beta}{beta}$ signal region of all 0${ u}{beta}{beta}$ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale $^{76}$Ge experiment. The collaboration aims to develop a phased 0${ u}{beta}{beta}$ experimental program with discovery potential at a half-life approaching or at $10^{28}$ years, using existing resources as appropriate to expedite physics results.
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0 ubetabeta$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of $^{100}$Mo-enriched 0.2 kg Li$_2$MoO$_4$ crystals. The detectors are complemented by 20 thin cryogenic Ge bolometers acting as light detectors to distinguish $alpha$ from $gamma$/$beta$ events by the detection of both heat and scintillation light signals. We observe good detector uniformity, facilitating the operation of a large detector array as well as excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Based on the observed energy resolutions and light yields a separation of $alpha$ particles at much better than 99.9% with equally high acceptance for $gamma$/$beta$ events is expected for events in the region of interest for $^{100}$Mo $0 ubetabeta$. We present limits on the crystals radiopurity ($leq$3 $mu$Bq/kg of $^{226}$Ra and $leq$2 $mu$Bq/kg of $^{232}$Th). Based on these initial results we also discuss a sensitivity study for the science reach of the CUPID-Mo experiment, in particular, the ability to set the most stringent half-life limit on the $^{100}$Mo $0 ubetabeta$ decay after half a year of livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology - developed in the framework of the LUMINEU project - selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale cryogenic $0 ubetabeta$ experiment.
80 - Michel Sorel 2019
Xenon time projection chambers (TPCs) have become a well-established detection technology for neutrinoless double beta decay searches in $^{136}$Xe. I discuss the motivations for this choice. I describe the status and prospects of both liquid and gaseous xenon TPC projects for double beta decay.
The {sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, $15 - 50$ meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of $sim$1 count/t-y or lower in the region of the signal. The {sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which $sim$30 kg will be enriched to 87% in $^{76}$Ge. The {sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850 level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا