Do you want to publish a course? Click here

Carbon Emissions and Large Neural Network Training

65   0   0.0 ( 0 )
 Added by Chen Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The computation demand for machine learning (ML) has grown rapidly recently, which comes with a number of costs. Estimating the energy cost helps measure its environmental impact and finding greener strategies, yet it is challenging without detailed information. We calculate the energy use and carbon footprint of several recent large models-T5, Meena, GShard, Switch Transformer, and GPT-3-and refine earlier estimates for the neural architecture search that found Evolved Transformer. We highlight the following opportunities to improve energy efficiency and CO2 equivalent emissions (CO2e): Large but sparsely activated DNNs can consume <1/10th the energy of large, dense DNNs without sacrificing accuracy despite using as many or even more parameters. Geographic location matters for ML workload scheduling since the fraction of carbon-free energy and resulting CO2e vary ~5X-10X, even within the same country and the same organization. We are now optimizing where and when large models are trained. Specific datacenter infrastructure matters, as Cloud datacenters can be ~1.4-2X more energy efficient than typical datacenters, and the ML-oriented accelerators inside them can be ~2-5X more effective than off-the-shelf systems. Remarkably, the choice of DNN, datacenter, and processor can reduce the carbon footprint up to ~100-1000X. These large factors also make retroactive estimates of energy cost difficult. To avoid miscalculations, we believe ML papers requiring large computational resources should make energy consumption and CO2e explicit when practical. We are working to be more transparent about energy use and CO2e in our future research. To help reduce the carbon footprint of ML, we believe energy usage and CO2e should be a key metric in evaluating models, and we are collaborating with MLPerf developers to include energy usage during training and inference in this industry standard benchmark.



rate research

Read More

Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6times 10^{11}$ tokens and based on the Common Crawl repository of web data.
The need to detect bias in machine learning (ML) models has led to the development of multiple bias detection methods, yet utilizing them is challenging since each method: i) explores a different ethical aspect of bias, which may result in contradictory output among the different methods, ii) provides an output of a different range/scale and therefore, cant be compared with other methods, and iii) requires different input, and therefore a human expert needs to be involved to adjust each method according to the examined model. In this paper, we present BENN -- a novel bias estimation method that uses a pretrained unsupervised deep neural network. Given a ML model and data samples, BENN provides a bias estimation for every feature based on the models predictions. We evaluated BENN using three benchmark datasets and one proprietary churn prediction model used by a European Telco and compared it with an ensemble of 21 existing bias estimation methods. Evaluation results highlight the significant advantages of BENN over the ensemble, as it is generic (i.e., can be applied to any ML model) and there is no need for a domain expert, yet it provides bias estimations that are aligned with those of the ensemble.
Batch normalization (BN) is a popular and ubiquitous method in deep learning that has been shown to decrease training time and improve generalization performance of neural networks. Despite its success, BN is not theoretically well understood. It is not suitable for use with very small mini-batch sizes or online learning. In this paper, we propose a new method called Batch Normalization Preconditioning (BNP). Instead of applying normalization explicitly through a batch normalization layer as is done in BN, BNP applies normalization by conditioning the parameter gradients directly during training. This is designed to improve the Hessian matrix of the loss function and hence convergence during training. One benefit is that BNP is not constrained on the mini-batch size and works in the online learning setting. Furthermore, its connection to BN provides theoretical insights on how BN improves training and how BN is applied to special architectures such as convolutional neural networks.
Neural networks enjoy widespread use, but many aspects of their training, representation, and operation are poorly understood. In particular, our view into the training process is limited, with a single scalar loss being the most common viewport into this high-dimensional, dynamic process. We propose a new window into training called Loss Change Allocation (LCA), in which credit for changes to the network loss is conservatively partitioned to the parameters. This measurement is accomplished by decomposing the components of an approximate path integral along the training trajectory using a Runge-Kutta integrator. This rich view shows which parameters are responsible for decreasing or increasing the loss during training, or which parameters help or hurt the networks learning, respectively. LCA may be summed over training iterations and/or over neurons, channels, or layers for increasingly coarse views. This new measurement device produces several insights into training. (1) We find that barely over 50% of parameters help during any given iteration. (2) Some entire layers hurt overall, moving on average against the training gradient, a phenomenon we hypothesize may be due to phase lag in an oscillatory training process. (3) Finally, increments in learning proceed in a synchronized manner across layers, often peaking on identical iterations.
Momentum is a widely used technique for gradient-based optimizers in deep learning. In this paper, we propose a decaying momentum (textsc{Demon}) rule. We conduct the first large-scale empirical analysis of momentum decay methods for modern neural network optimization, in addition to the most popular learning rate decay schedules. Across 28 relevant combinations of models, epochs, datasets, and optimizers, textsc{Demon} achieves the highest number of Top-1 and Top-3 finishes at 39% and 85% respectively, almost doubling the second-placed learning rate cosine schedule at 17% and 60%, respectively. textsc{Demon} also outperforms other widely used schedulers including, but not limited to, the learning rate step schedule, linear schedule, OneCycle schedule, and exponential schedule. Compared with the widely used learning rate step schedule, textsc{Demon} is observed to be less sensitive to parameter tuning, which is critical to training neural networks in practice. Results are demonstrated across a variety of settings and architectures, including image classification, generative models, and language models. textsc{Demon} is easy to implement, requires no additional tuning, and incurs almost no extra computational overhead compared to the vanilla counterparts. Code is readily available.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا