Do you want to publish a course? Click here

Portfolio Selection under Multivariate Merton Model with Correlated Jump Risk

160   0   0.0 ( 0 )
 Added by Mohsen Rezapour
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Portfolio selection in the periodic investment of securities modeled by a multivariate Merton model with dependent jumps is considered. The optimization framework is designed to maximize expected terminal wealth when portfolio risk is measured by the Condition-Value-at-Risk ($CVaR$). Solving the portfolio optimization problem by Monte Carlo simulation often requires intensive and time-consuming computation; hence a faster and more efficient portfolio optimization method based on closed-form comonotonic bounds for the risk measure $CVaR$ of the terminal wealth is proposed.



rate research

Read More

In this paper, we are concerned with the optimization of a dynamic investment portfolio when the securities which follow a multivariate Merton model with dependent jumps are periodically invested and proceed by approximating the Condition-Value-at-Risk (CVaR) by comonotonic bounds and maximize the expected terminal wealth. Numerical studies as well as applications of our results to real datasets are also provided.
This article studies a portfolio optimization problem, where the market consisting of several stocks is modeled by a multi-dimensional jump-diffusion process with age-dependent semi-Markov modulated coefficients. We study risk sensitive portfolio optimization on the finite time horizon. We study the problem by using a probabilistic approach to establish the existence and uniqueness of the classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We also implement a numerical scheme to investigate the behavior of solutions for different values of the initial portfolio wealth, the maturity, and the risk of aversion parameter.
We quantify model risk of a financial portfolio whereby a multi-period mean-standard-deviation criterion is used as a selection criterion. In this work, model risk is defined as the loss due to uncertainty of the underlying distribution of the returns of the assets in the portfolio. The uncertainty is measured by the Kullback-Leibler divergence, i.e., the relative entropy. In the worst case scenario, the optimal robust strategy can be obtained in a semi-analytical form as a solution of a system of nonlinear equations. Several numerical results are presented which allow us to compare the performance of this robust strategy with the optimal non-robust strategy. For illustration, we also quantify the model risk associated with an empirical dataset.
We consider a linear regression model, with the parameter of interest a specified linear combination of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizing AIC) is used to select a model. It is common statistical practice to then construct a confidence interval for the parameter of interest based on the assumption that the selected model had been given to us a priori. This assumption is false and it can lead to a confidence interval with poor coverage properties. We provide an easily-computed finite sample upper bound (calculated by repeated numerical evaluation of a double integral) to the minimum coverage probability of this confidence interval. This bound applies for model selection by any of the following methods: minimum AIC, minimum BIC, maximum adjusted R-squared, minimum Mallows Cp and t-tests. The importance of this upper bound is that it delineates general categories of design matrices and model selection procedures for which this confidence interval has poor coverage properties. This upper bound is shown to be a finite sample analogue of an earlier large sample upper bound due to Kabaila and Leeb.
In economics, insurance and finance, value at risk (VaR) is a widely used measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, time horizon, and probability $alpha$, the $100alpha%$ VaR is defined as a threshold loss value, such that the probability that the loss on the portfolio over the given time horizon exceeds this value is $alpha$. That is to say, it is a quantile of the distribution of the losses, which has both good analytic properties and easy interpretation as a risk measure. However, its extension to the multivariate framework is not unique because a unique definition of multivariate quantile does not exist. In the current literature, the multivariate quantiles are related to a specific partial order considered in $mathbb{R}^{n}$, or to a property of the univariate quantile that is desirable to be extended to $mathbb{R}^{n}$. In this work, we introduce a multivariate value at risk as a vector-valued directional risk measure, based on a directional multivariate quantile, which has recently been introduced in the literature. The directional approach allows the manager to consider external information or risk preferences in her/his analysis. We have derived some properties of the risk measure and we have compared the univariate textit{VaR} over the marginals with the components of the directional multivariate VaR. We have also analyzed the relationship between some families of copulas, for which it is possible to obtain closed forms of the multivariate VaR that we propose. Finally, comparisons with other alternative multivariate VaR given in the literature, are provided in terms of robustness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا