Do you want to publish a course? Click here

An efficient measure for the expressivity of variational quantum algorithms

178   0   0.0 ( 0 )
 Added by Yuxuan Du
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The superiority of variational quantum algorithms (VQAs) such as quantum neural networks (QNNs) and variational quantum eigen-solvers (VQEs) heavily depends on the expressivity of the employed ansatze. Namely, a simple ansatze is insufficient to capture the optimal solution, while an intricate ansatze leads to the hardness of the trainability. Despite its fundamental importance, an effective strategy of measuring the expressivity of VQAs remains largely unknown. Here, we exploit an advanced tool in statistical learning theory, i.e., covering number, to study the expressivity of VQAs. In particular, we first exhibit how the expressivity of VQAs with an arbitrary ansatze is upper bounded by the number of quantum gates and the measurement observable. We next explore the expressivity of VQAs on near-term quantum chips, where the system noise is considered. We observe an exponential decay of the expressivity with increasing circuit depth. We also utilize the achieved expressivity to analyze the generalization of QNNs and the accuracy of VQE. We numerically verify our theory employing VQAs with different levels of expressivity. Our work opens the avenue for quantitative understanding of the expressivity of VQAs.



rate research

Read More

Near-term quantum computing (QC) systems have limited qubit counts, high gate (instruction) error rates, and typically support a minimal instruction set having one type of two-qubit gate (2Q). To reduce program instruction counts and improve application expressivity, vendors have proposed, and shown proof-of-concept demonstrations of richer instruction sets such as XY gates (Rigetti) and fSim gates (Google). These instruction sets comprise of families of 2Q gate types parameterized by continuous qubit rotation angles. However, having such a large number of gate types is problematic because each gate type has to be calibrated periodically, across the full system, to obtain high fidelity implementations. This results in substantial recurring calibration overheads even on current systems which use only a few gate types. Our work aims to navigate this tradeoff between application expressivity and calibration overhead, and identify what instructions vendors should implement to get the best expressivity with acceptable calibration time. We develop NuOp, a flexible compilation pass based on numerical optimization, to efficiently decompose application operations into arbitrary hardware gate types. Using NuOp and four important quantum applications, we study the instruction set proposals of Rigetti and Google, with realistic noise simulations and a calibration model. Our experiments show that implementing 4-8 types of 2Q gates is sufficient to attain nearly the same expressivity as a full continuous gate family, while reducing the calibration overhead by two orders of magnitude. With several vendors proposing rich gate families as means to higher fidelity, our work has potential to provide valuable instruction set design guidance for near-term QC systems.
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications, although fault-tolerant quantum computers will likely not be available for several years. Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. In this review article we present an overview of the field of VQAs. Furthermore, we discuss strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage.
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schr{o}dinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjust the parameters of the quantum circuit so that the objective function is minimized. However, they often suffer from the so-called vanishing gradient or barren plateau issue. On the other hand, the normalized gradient descent (NGD) method, which employs the normalized gradient vector to update the parameters, has been successfully utilized in several optimization problems. Here, we study the performance of the NGD methods in the optimization of VQAs for the first time. Our goal is two-fold. The first is to examine the effectiveness of NGD and its variants for overcoming the vanishing gradient problems. The second is to propose a new NGD that can attain the faster convergence than the ordinary NGD. We performed numerical simulations of these gradient-based optimizers in the context of quantum chemistry where VQAs are used to find the ground state of a given Hamiltonian. The results show the effective convergence property of the NGD methods in VQAs, compared to the relevant optimizers without normalization. Moreover, we make use of some normalized gradient vectors at the past iteration steps to propose the novel historical NGD that has a theoretical guarantee to accelerate the convergence speed, which is observed in the numerical experiments as well.
Variational Quantum Algorithms (VQAs) are a promising application for near-term quantum processors, however the quality of their results is greatly limited by noise. For this reason, various error mitigation techniques have emerged to deal with noise that can be applied to these algorithms. Recent work introduced a technique for mitigating expectation values against correlated measurement errors that can be applied to measurements of 10s of qubits. We apply these techniques to VQAs and demonstrate its effectiveness in improving estimates to the cost function. Moreover, we use the data resulting from this technique to experimentally characterize measurement errors in terms of the device connectivity on devices of up to 20 qubits. These results should be useful for better understanding the near-term potential of VQAs as well as understanding the correlations in measurement errors on large, near-term devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا