Do you want to publish a course? Click here

Upper and Lower Bounds for Deterministic Approximate Objects

117   0   0.0 ( 0 )
 Added by Adnane Khattabi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Relaxing the sequential specification of shared objects has been proposed as a promising approach to obtain implementations with better complexity. In this paper, we study the step complexity of relaxed variants of two common shared objects: max registers and counters. In particular, we consider the $k$-multiplicative-accurate max register and the $k$-multiplicative-accurate counter, where read operations are allowed to err by a multiplicative factor of $k$ (for some $k in mathbb{N}$). More accurately, reads are allowed to return an approximate value $x$ of the maximum value $v$ previously written to the max register, or of the number $v$ of increments previously applied to the counter, respectively, such that $v/k leq x leq v cdot k$. We provide upper and lower bounds on the complexity of implementing these objects in a wait-free manner in the shared memory model.

rate research

Read More

In this paper, we study the lower- and upper-bounded covering (LUC) problem, where we are given a set $P$ of $n$ points, a collection $mathcal{B}$ of balls, and parameters $L$ and $U$. The goal is to find a minimum-sized subset $mathcal{B}subseteq mathcal{B}$ and an assignment of the points in $P$ to $mathcal{B}$, such that each point $pin P$ is assigned to a ball that contains $p$ and for each ball $B_iin mathcal{B}$, at least $L$ and at most $U$ points are assigned to $B_i$. We obtain an LP rounding based constant approximation for LUC by violating the lower and upper bound constraints by small constant factors and expanding the balls by again a small constant factor. Similar results were known before for covering problems with only the upper bound constraint. We also show that with only the lower bound constraint, the above result can be obtained without any lower bound violation. Covering problems have close connections with facility location problems. We note that the known constant-approximation for the corresponding lower- and upper-bounded facility location problem, violates the lower and upper bound constraints by a constant factor.
The emergence of systems with non-volatile main memory (NVM) increases the interest in the design of emph{recoverable concurrent objects} that are robust to crash-failures, since their operations are able to recover from such failures by using state retained in NVM. Of particular interest are recoverable algorithms that, in addition to ensuring object consistency, also provide emph{detectability}, a correctness condition requiring that the recovery code can infer if the failed operation was linearized or not and, in the former case, obtain its response. In this work, we investigate the space complexity of detectable algorithms and the external support they require. We make the following three contributions. First, we present the first wait-free bounded-space detectable read/write and CAS object implementations. Second, we prove that the bit complexity of every $N$-process obstruction-free detectable CAS implementation, assuming values from a domain of size at least $N$, is $Omega(N)$. Finally, we prove that the following holds for obstruction-free detectable implementations of a large class of objects: their recoverable operations must be provided with emph{auxiliary state} -- state that is not required by the non-recoverable counterpart implementation -- whose value must be provided from outside the operation, either by the system or by the caller of the operation. In contrast, this external support is, in general, not required if the recoverable algorithm is not detectable.
144 - William Kretschmer 2019
We prove a query complexity lower bound for $mathsf{QMA}$ protocols that solve approximate counting: estimating the size of a set given a membership oracle. This gives rise to an oracle $A$ such that $mathsf{SBP}^A otsubset mathsf{QMA}^A$, resolving an open problem of Aaronson [2]. Our proof uses the polynomial method to derive a lower bound for the $mathsf{SBQP}$ query complexity of the $mathsf{AND}$ of two approximate counting instances. We use Laurent polynomials as a tool in our proof, showing that the Laurent polynomial method can be useful even for problems involving ordinary polynomials.
Given a graph $G = (V,E)$, an $(alpha, beta)$-ruling set is a subset $S subseteq V$ such that the distance between any two vertices in $S$ is at least $alpha$, and the distance between any vertex in $V$ and the closest vertex in $S$ is at most $beta$. We present lower bounds for distributedly computing ruling sets. More precisely, for the problem of computing a $(2, beta)$-ruling set in the LOCAL model, we show the following, where $n$ denotes the number of vertices, $Delta$ the maximum degree, and $c$ is some universal constant independent of $n$ and $Delta$. $bullet$ Any deterministic algorithm requires $Omegaleft(min left{ frac{log Delta}{beta log log Delta} , log_Delta n right} right)$ rounds, for all $beta le c cdot minleft{ sqrt{frac{log Delta}{log log Delta}} , log_Delta n right}$. By optimizing $Delta$, this implies a deterministic lower bound of $Omegaleft(sqrt{frac{log n}{beta log log n}}right)$ for all $beta le c sqrt[3]{frac{log n}{log log n}}$. $bullet$ Any randomized algorithm requires $Omegaleft(min left{ frac{log Delta}{beta log log Delta} , log_Delta log n right} right)$ rounds, for all $beta le c cdot minleft{ sqrt{frac{log Delta}{log log Delta}} , log_Delta log n right}$. By optimizing $Delta$, this implies a randomized lower bound of $Omegaleft(sqrt{frac{log log n}{beta log log log n}}right)$ for all $beta le c sqrt[3]{frac{log log n}{log log log n}}$. For $beta > 1$, this improves on the previously best lower bound of $Omega(log^* n)$ rounds that follows from the 30-year-old bounds of Linial [FOCS87] and Naor [J.Disc.Math.91]. For $beta = 1$, i.e., for the problem of computing a maximal independent set, our results improve on the previously best lower bound of $Omega(log^* n)$ on trees, as our bounds already hold on trees.
A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا