Do you want to publish a course? Click here

Accelerating Surgical Robotics Research: Reviewing 10 Years of Research with the dVRK

95   0   0.0 ( 0 )
 Added by Claudia D'Ettorre
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Robotic-assisted surgery is now well-established in clinical practice and has become the gold standard clinical treatment option for several clinical indications. The field of robotic-assisted surgery is expected to grow substantially in the next decade with a range of new robotic devices emerging to address unmet clinical needs across different specialities. A vibrant surgical robotics research community is pivotal for conceptualizing such new systems as well as for developing and training the engineers and scientists to translate them into practice. The da Vinci Research Kit (dVRK), an academic and industry collaborative effort to re-purpose decommissioned da Vinci surgical systems (Intuitive Surgical Inc, CA, USA) as a research platform for surgical robotics research, has been a key initiative for addressing a barrier to entry for new research groups in surgical robotics. In this paper, we present an extensive review of the publications that have been facilitated by the dVRK over the past decade. We classify research efforts into different categories and outline some of the major challenges and needs for the robotics community to maintain this initiative and build upon it.



rate research

Read More

Many have explored the application of continuum robot manipulators for minimally invasive surgery, and have successfully demonstrated the advantages their flexible design provides -- with some solutions having reached commercialisation and clinical practice. However, the usual high complexity and closed-nature of such designs has traditionally restricted the shared development of continuum robots across the research area, thus impacting further progress and the solution of open challenges. In order to close this gap, this paper introduces ENDO, an open-source 3-segment continuum robot manipulator with control and actuation mechanism, whose focus is on simplicity, affordability, and accessibility. This robotic system is fabricated from low cost off-the-shelf components and rapid prototyping methods, and its information for implementation (and that of future iterations), including CAD files and source code, is available to the public on the Open Source Medical Robots initiatives repository on GitHub (https://github.com/OpenSourceMedicalRobots), with the control library also available directly from Arduino. Herein, we present details of the robot design and control, validate functionality by experimentally evaluating its workspace, and discuss possible paths for future development.
Traditional control and task automation have been successfully demonstrated in a variety of structured, controlled environments through the use of highly specialized modeled robotic systems in conjunction with multiple sensors. However, the application of autonomy in endoscopic surgery is very challenging, particularly in soft tissue work, due to the lack of high-quality images and the unpredictable, constantly deforming environment. In this work, we propose a novel surgical perception framework, SuPer, for surgical robotic control. This framework continuously collects 3D geometric information that allows for mapping a deformable surgical field while tracking rigid instruments within the field. To achieve this, a model-based tracker is employed to localize the surgical tool with a kinematic prior in conjunction with a model-free tracker to reconstruct the deformable environment and provide an estimated point cloud as a mapping of the environment. The proposed framework was implemented on the da Vinci Surgical System in real-time with an end-effector controller where the target configurations are set and regulated through the framework. Our proposed framework successfully completed soft tissue manipulation tasks with high accuracy. The demonstration of this novel framework is promising for the future of surgical autonomy. In addition, we provide our dataset for further surgical research.
The Kilobot is a widely used platform for investigation of swarm robotics. Physical Kilobots are slow moving and require frequent recalibration and charging, which significantly slows down the development cycle. Simulators can speed up the process of testing, exploring and hypothesis generation, but usually require time consuming and error-prone translation of code between simulator and robot. Moreover, code of different nature often obfuscates direct comparison, as well as determination of the cause of deviation, between simulator and actual robot swarm behaviour. To tackle these issues we have developed a C-based simulator that allows those working with Kilobots to use the same programme code in both the simulator and the physical robots. Use of our simulator, coined Kilombo, significantly simplifies and speeds up development, given that a simulation of 1000 robots can be run at a speed 100 times faster than real time on a desktop computer, making high-throughput pre-screening possible of potential algorithms that could lead to desired emergent behaviour. We argue that this strategy, here specifically developed for Kilobots, is of general importance for effective robot swarm research. The source code is freely available under the MIT license.
Scientific publishing seems to be at a turning point. Its paradigm has stayed basically the same for 300 years but is now challenged by the increasing volume of articles that makes it very hard for scientists to stay up to date in their respective fields. In fact, many have pointed out serious flaws of current scientific publishing practices, including the lack of accuracy and efficiency of the reviewing process. To address some of these problems, we apply here the general principles of the Web and the Semantic Web to scientific publishing, focusing on the reviewing process. We want to determine if a fine-grained model of the scientific publishing workflow can help us make the reviewing processes better organized and more accurate, by ensuring that review comments are created with formal links and semantics from the start. Our contributions include a novel model called Linkflows that allows for such detailed and semantically rich representations of reviews and the reviewing processes. We evaluate our approach on a manually curated dataset from several recent Computer Science journals and conferences that come with open peer reviews. We gathered ground-truth data by contacting the original reviewers and asking them to categorize their own review comments according to our model. Comparing this ground truth to answers provided by model experts, peers, and automated techniques confirms that our approach of formally capturing the reviewers intentions from the start prevents substantial discrepancies compared to when this information is later extracted from the plain-text comments. In general, our analysis shows that our model is well understood and easy to apply, and it revealed the semantic properties of such review comments.
Surgical robots have had clinical use since the mid 1990s. Robot-assisted surgeries offer many benefits over the conventional approach including lower risk of infection and blood loss, shorter recovery, and an overall safer procedure for patients. The past few decades have shown many emerging surgical robotic platforms that can work in complex and confined channels of the internal human organs and improve the cognitive and physical skills of the surgeons during the operation. Advanced technologies for sensing, actuation, and intelligent control have enabled multiple surgical devices to simultaneously operate within the human body at low cost and with more efficiency. Despite advances, current surgical intervention systems are not able to execute autonomous tasks and make cognitive decisions that are analogous to that of humans. This paper will overview a historical development of surgery from conventional open to robotic-assisted approaches with discussion on the capabilities of advanced intelligent systems and devices that are currently implemented in existing surgical robotic systems. It will also revisit available autonomous surgical platforms with comments on the essential technologies, existing challenges, and suggestions for the future development of intelligent robotic-assisted surgical systems towards the achievement of fully autonomous operation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا