Do you want to publish a course? Click here

Production of dual species Bose-Einstein condensates of $^{39}$K and $^{87}$Rb

75   0   0.0 ( 0 )
 Added by Wang Pengjun
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the production of $^{39}$K and $^{87}$Rb Bose-Einstein condensates (BECs) in the lowest hyperfine states $| F=1,m_{F}=1 rangle$ simultaneously. We collect atoms in bright/dark magneto-optical traps (MOTs) of $^{39}$K/$^{87}$Rb to overcome the light-assisted losses of $^{39}$K atoms. Gray molasses cooling on the D1 line of the $^{39}$K is used to effectively increase the phase density, which improves the loading efficiency of $^{39}$K into the quadrupole magnetic trap. Simultaneously, the normal molasses are employed for $^{87}$Rb. After the microwave evaporation cooling on $^{87}$Rb in the optically plugged magnetic trap, the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of $^{39}$K and $^{87}$Rb are obtained by further evaporative cooling in optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length $a_{KRb}$ = 34 $a_{0}$ ($a_{0}$ is the Bohr radius) and the intraspecies scattering length $a_{K}$ = 20.05 $a_{0}$.



rate research

Read More

We present the production of dual-species Bose-Einstein condensates of $^{39}mathrm{K}$ and $^{87}mathrm{Rb}$. Preparation of both species in the $left| F=1,m_F=-1 rightrangle$ state enabled us to exploit a total of three Fesh-bach resonances which allows for simultaneous Feshbach tuning of the $^{39}mathrm{K}$ intraspecies and the $^{39}mathrm{K}$-$^{87}mathrm{Rb}$ interspecies scattering length. Thus dual-species Bose-Einstein condensates were produced by sympathetic cooling of $^{39}mathrm{K}$ with $^{87}mathrm{Rb}$. A dark spontaneous force optical trap was used for $^{87}mathrm{Rb}$, to reduce the losses in $^{39}mathrm{K}$ due to light-assisted collisions in the optical trapping phase, which can be of benefit for other dual-species experiments. The tunability of the scattering length was used to perform precision spectroscopy of the interspecies Feshbach resonance located at $117.56(2),mathrm{G}$ and to determine the width of the resonance to $1.21(5),mathrm{G}$ by rethermalization measurements. The transition region from miscible to immiscible dual-species condensates was investigated and the interspecies background scattering length was determined to $28.5,a_mathrm{0}$ using an empirical model. This paves the way for dual-species experiments with $^{39}mathrm{K}$ and $^{87}mathrm{Rb}$ BECs ranging from molecular physics to precision metrology.
We report the formation of a dual-species Bose-Einstein condensate of $^{87}$Rb and $^{133}$Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of $^{133}$Cs via elastic collisions with $^{87}$Rb, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to $2times10^{4}$ atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the $^{87}$Rb during the cooling, we create single species $^{133}$Cs condensates of up to $6times10^{4}$ atoms.
We describe a simple and compact single-chamber apparatus for robust production of $^87$Rb Bose-Einstein condensates. The apparatus is built from off-the-shelf components and allows production of quasi-pure condensates of > $3times 10^5$ atoms in < 30 s. This is achieved using a hybrid trap created by a quadrupole magnetic field and a single red-detuned laser beam [Y.-J. Lin et al., Phys. Rev. A 79, 063631 (2009)]. In the same apparatus we also achieve condensation in an optically plugged quadrupole trap [K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)] and show that as little as 70 mW of plug-laser power is sufficient for condensation, making it viable to pursue this approach using inexpensive diode lasers. While very compact, our apparatus features sufficient optical access for complex experiments, and we have recently used it to demonstrate condensation in a uniform optical-box potential [A. Gaunt et al., arXiv:1212.4453 (2012)].
180 - Yujiro Eto , Hiroki Saito , 2014
We report the spin texture formation resulting from the magnetic dipole-dipole interaction in a spin-2 $^{87}$Rb Bose-Einstein condensate. The spinor condensate is prepared in the transversely polarized spin state and the time evolution is observed under a magnetic field of 90 mG with a gradient of 3 mG/cm using Stern-Gerlach imaging. The experimental results are compared with numerical simulations of the Gross-Pitaevskii equation, which reveals that the observed spatial modulation of the longitudinal magnetization is due to the spin precession in an effective magnetic field produced by the dipole-dipole interaction. These results show that the dipole-dipole interaction has considerable effects even on spinor condensates of alkali metal atoms.
We report on the production of a 41K-87Rb dual-species Bose-Einstein condensate in a hybrid trap, consisting of a magnetic quadrupole and an optical dipole potential. After loading both atomic species in the trap, we cool down 87Rb first by magnetic and then by optical evaporation, while 41K is sympathetically cooled by elastic collisions with 87Rb. We eventually produce two-component condensates with more than 10^5 atoms and tunable species population imbalance. We observe the immiscibility of the quantum mixture by measuring the density profile of each species after releasing them from the trap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا