Little is known about the spin-flip diffusion length $l_{rm sf}$, one of the most important material parameters in the field of spintronics. We use a density-functional-theory based scattering approach to determine values of $l_{rm sf}$ that result from electron-phonon scattering as a function of temperature for all 5d transition metal elements. $l_{rm sf}$ does not decrease monotonically with the atomic number Z but is found to be inversely proportional to the density of states at the Fermi level. By using the same local current methodology to calculate the spin Hall angle $Theta_{rm sH}$ that characterizes the efficiency of the spin Hall effect, we show that the products $rho(T)l_{rm sf}(T)$ and $Theta_{rm sH}(T)l_{rm sf}(T)$ are constant.