Nuclear quantum effects in thermal conductivity from centroid molecular dynamics


Abstract in English

We show that the centroid molecular dynamics (CMD) method provides a realistic way to calculate the thermal diffusivity $a=lambda/rho c_{rm V}$ of a quantum mechanical liquid such as para-hydrogen. Once $a$ has been calculated, the thermal conductivity can be obtained from $lambda=rho c_{rm V}a$, where $rho$ is the density of the liquid and $c_{rm V}$ is the constant-volume heat capacity. The use of this formula requires an accurate quantum mechanical heat capacity $c_{rm V}$, which can be obtained from a path integral molecular dynamics simulation. The thermal diffusivity can be calculated either from the decay of the equilibrium density fluctuations in the liquid or by using the Green-Kubo relation to calculate the CMD approximation to $lambda$ and then dividing this by the corresponding approximation to $rho c_{rm V}$. We show that both approaches give the same results for liquid para-hydrogen and that these results are in good agreement with experimental measurements of the thermal conductivity over a wide temperature range. In particular, they correctly predict a decrease in the thermal conductivity at low temperatures -- an effect that stems from the decrease in the quantum mechanical heat capacity and has eluded previous para-hydrogen simulations. We also show that the method gives equally good agreement with experimental measurements for the thermal conductivity of normal liquid helium.

Download