No Arabic abstract
At peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at $z>6$ in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $zgtrsim6$; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.
We are entering a new era for high energy astrophysics with the use of new technology to increase our ability to both survey and monitor the sky. The Soft X-ray Imager (SXI) instrument on the THESEUS mission will revolutionize transient astronomy by using wide-field focusing optics to increase the sensitivity to fast transients by several orders of magnitude. The THESEUS mission is under Phase A study by ESA for its M5 opportunity. THESEUS will carry two large area monitors utilizing Lobster-eye (the SXI instrument) and coded-mask (the XGIS instrument) technologies, and an optical-IR telescope to provide source redshifts using multi-band imaging and spectroscopy. The SXI will operate in the soft (0.3-5 keV) X-ray band, and consists of two identical modules, each comprising 64 Micro Pore Optics and 8 large-format CMOS detectors. It will image a total field of view of 0.5 steradian instantaneously while providing arcminute localization accuracy. During the mission, the SXI will find many hundreds of transients per year, facilitating an exploration of the earliest phase of star formation and comes at a time when multi-messenger astronomy has begun to provide a new window on the universe. THESEUS will also provide key targets for other observing facilities, such as Athena and 30m class ground-based telescopes.
The capability of maintaining two satellites in precise relative position, stable in a celestial coordinate system, would enable major advances in a number of scientific disciplines and with a variety of types of instrumentation. The common requirement is for formation flying of two spacecraft with the direction of their vector separation in inertial coordinates precisely controlled and accurately determined as a function of time. We consider here the scientific goals that could be achieved with such technology and review some of the proposals that have been made for specific missions. Types of instrumentation that will benefit from the development of this type of formation flying include 1) imaging systems, in which an optical element on one spacecraft forms a distant image recorded by a detector array on the other spacecraft, including telescopes capable of very high angular resolution; 2) systems in which the front spacecraft of a pair carries an occulting disk, allowing very high dynamic range observations of the solar corona and exoplanets; 3) interferometers, another class of instrument that aims at very high angular resolution and which, though usually requiring more than two spacecraft, demands very much the same developments.
An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the array into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundamental constants across cosmic time, maser science, and astrometry.
Long Gamma Ray Bursts (LGRBs) can be used to address key questions on the formation of the modern universe including: How does the star formation rate evolve at high redshift? When and how did the intergalactic medium become re-ionized? What processes governed its early chemical enrichment? A LGRB signals when a massive star collapses to form a black hole and in doing so provides an independent tracer of the star formation rate. The LGRB afterglow is a bright back-light to view the host galaxy and intergalactic medium in absorption. The Gamow Explorer will be optimized to search for high redshift LGRBs, with a z>6 detection rate at least ten times the Neil Gehrels Swift Observatory. Furthermore it will go beyond Swift by using the photo-z technique to autonomously identify >80% of z>6 redshift LGRBs to enable rapid follow up by large ground based telescopes and JWST for spectroscopy and host galaxy identification. The Gamow Explorer will be proposed to the 2021 NASA MIDEX opportunity for launch in 2028.
The Transient High Energy Sources and Early Universe Surveyor is an ESA M5 candidate mission currently in Phase A, with Launch in $sim$2032. The aim of the mission is to complete a Gamma Ray Burst survey and monitor transient X-ray events. The University of Leicester is the PI institute for the Soft X-ray Instrument (SXI), and is responsible for both the optic and detector development. The SXI consists of two wide field, lobster eye X-ray modules. Each module consists of 64 Micro Pore Optics (MPO) in an 8 by 8 array and 8 CMOS detectors in each focal plane. The geometry of the MPOs comprises a square packed array of microscopic pores with a square cross-section, arranged over a spherical surface with a radius of curvature twice the focal length of the optic. Working in the photon energy range 0.3-5 keV, the optimum $L/d$ ratio (length of pore $L$ and pore width $d$) is upwards of 50 and is constant across the whole optic aperture for the SXI. The performance goal for the SXI modules is an angular resolution of 4.5 arcmin, localisation accuracy of $sim$1 arcmin and employing an $L/d$ of 60. During the Phase A study, we are investigating methods to improve the current performance and consistency of the MPOs, in cooperation with the manufacturer Photonis France SAS. We present the optics design of the THESEUS SXI modules and the programme of work designed to improve the MPOs performance and the results from the study.