Do you want to publish a course? Click here

Kinematics of MgII Absorbers from the Redshift-space Distortion Around Massive Quiescent Galaxies

120   0   0.0 ( 0 )
 Added by Ying Zu
 Publication date 2021
  fields Physics
and research's language is English
 Authors Ying Zu




Ask ChatGPT about the research

The kinematics of MgII absorbers is the key to understanding the origin of cool, metal-enriched gas clouds in the circumgalactic medium of massive quiescent galaxies. Exploiting the fact that the cloud line-of-sight velocity distribution is the only unknown for predicting the redshift-space distortion~(RSD) of MgII absorbers from their 3D real-space distribution around galaxies, we develop a novel method to infer the cool cloud kinematics from the redshift-space galaxy-cloud cross-correlation $xi^{s}$. We measure $xi^{s}$ for ${sim}10^4$ MgII absorbers around ${sim}8{times}10^5$ CMASS galaxies at $0.4{<}z{<}0.8$. We discover that $xi^{s}$ does not exhibit a strong Fingers-of-God effect, but is heavily truncated at velocity ${sim}300,km/s$. We reconstruct both the redshift and real-space cloud number density distributions inside haloes, $xi^{s}_{1h}$ and $xi_{1h}$, respectively. Thus, for any model of cloud kinematics, we can predict $xi^{s}_{1h}$ from the reconstructed $xi_{1h}$, and self-consistently compare to the observed $xi^{s}_{1h}$. We consider four types of cloud kinematics, including an isothermal model with a single velocity dispersion, a satellite infall model in which cool clouds reside in the subhaloes, a cloud accretion model in which clouds follow the cosmic gas accretion, and a tired wind model in which clouds originate from the galactic wind-driven bubbles. All the four models provide statistically good fits to the RSD data, but only the tired wind model can reproduce the observed truncation by propagating ancient wind bubbles at ${sim}250,km/s$ on scales ${sim}400,kpc/h$. Our method provides an exciting path to decoding the dynamical origin of metal absorbers from the RSD measurements with upcoming spectroscopic surveys.

rate research

Read More

We report the likely identification of a substantial population of massive M~10^11M_Sun galaxies at z~4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey. The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000AA breaks, relatively old stellar populations, large stellar masses and low SFRs, with a median specific SFR of 2.9+/-1.8 x 10^-11/yr. Ultradeep Herschel/PACS 100micron, 160micron and Spitzer/MIPS 24micron data reveal no dust-obscured SFR activity for 15/19 (79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the SED fit, indicating independently that the average specific SFR is at least 10x smaller than of typical star-forming galaxies at z~4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8+/-0.7 x 10^-5Mpc^-3 to a limit of log10M/M_Sun>10.6, which is 10x and 80x lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (~35%) of z~4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8Gyr and stellar mass of 0.8x10^11M_Sun, the galaxies likely started forming stars before z =5, with SFRs well in excess of 100M_Sun/yr, far exceeding that of similarly abundant UV-bright galaxies at z>4. This suggests that most of the star-formation in the progenitors of quiescent z~4 galaxies was obscured by dust.
Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]), which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at z~1.4, with [Mg/Fe]=0.45(+0.05,-0.19). A slightly earlier epoch (z~1.6) was probed by stacking the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] of 0.31+/-0.12. However, the relatively low S/N of the data and the use of index analysis techniques for both studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z>2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at z=2.1. With [Mg/Fe]=0.59+/-0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1-0.5 Gyr - characteristics that are similar to population II stars in the Milky Way. With an average past SFR of 600-3000 Msol/yr, this galaxy was among the most vigorous star-forming galaxies in the Universe.
We study the redshift evolution of the dynamical properties of ~180,000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1<z< 0.6. The typical stellar mass of this sample is Mstar~2x10^{11} Msun. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the SDSS imaging we calibrate the SDSS size measurements with HST/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass, are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2sigma significance. By combining our sample with high-redshift literature data we find that this evolution of the dynamical to stellar mass ratio continues beyond z~0.7 up to z>2 as Mdyn/Mstar~ (1+z)^{-0.30+/- 0.12} further strengthening the evidence for an increase of Mdyn/Mstar with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.
The equivalent widths of MgII absorption in the circumgalactic medium (CGM) trace the global star formation rate up to $z<6$, are larger for star-forming galaxies than passively-evolving galaxies, and decrease with increasing distance from the galaxy. We delve further into the physics involved by investigating gas kinematics and cloud column density distributions as a function of galaxy color, redshift, and projected distance from the galaxy (normalized by galaxy virial radius, $D/R_{rm vir}$). For 39 isolated galaxies at $0.3<z_{rm gal}<1.0$, we have detected MgII absorption in high-resolution ($Delta vsimeq 6.6$ km/s) spectra of background quasars within a projected distance of $7<D<190$ kpc. We characterize the absorption velocity spread using pixel-velocity two-point correlation functions. Velocity dispersions and cloud column densities for blue galaxies do not differ with redshift nor with $D/R_{rm vir}$. This suggests that outflows continually replenish the CGM of blue galaxies with high velocity dispersion, large column density gas out to large distances. Conversely, absorption hosted by red galaxies evolves with redshift where the velocity dispersions (column densities) are smaller (larger) at $z_{rm gal}<0.656$. After taking into account larger possible velocities in more massive galaxies, we find that there is no difference in the velocity dispersions or column densities for absorption hosted by red galaxies with $D/R_{rm vir}$. Thus, a lack of outflows in red galaxies causes the CGM to become more quiescent over time, with lower velocity dispersions and larger column densities towards lower $z_{rm gal}$. The quenching of star formation appears to affect the CGM out to $D/R_{rm vir}=0.75$.
494 - A. Lapi 2013
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at high redshift z>1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ~0.5-1 Gyr, and then abruptly declines due to quasar feedback; over the same timescale, (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation and is temporarily stored into a massive reservoir/proto-torus wherefrom it can be promptly accreted; (iii) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L_Edd< 4, particularly at the highest redshifts; (iv) for massive BHs the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the latter has retained enough gas, a phase of supply-limited accretion follows exponentially declining with a timescale of about 2 e-folding times. We show that the ratio of the FIR luminosity of the host galaxy to the bolometric luminosity of the AGN maps the various stages of the above sequence. Finally, we discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly-lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next generation X-ray instruments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا