We demonstrate that a quantum annealer can be used to solve the NP-complete problem of graph partitioning into subgraphs containing Hamiltonian cycles of constrained length. We present a method to find a partition of a given directed graph into Hamiltonian subgraphs with three or more vertices, called vertex 3-cycle cover. We formulate the problem as a quadratic unconstrained binary optimisation and run it on a D-Wave Advantage quantum annealer. We test our method on synthetic graphs constructed by adding a number of random edges to a set of disjoint cycles. We show that the probability of solution is independent of the cycle length, and a solution is found for graphs up to 4000 vertices and 5200 edges, close to the number of physical working qubits available on the quantum annealer.