Do you want to publish a course? Click here

Probing for Bridging Inference in Transformer Language Models

84   0   0.0 ( 0 )
 Added by Onkar Pandit
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations in-comparison with the lower and middle layers, also, few specific attention heads concentrate consistently on bridging. More importantly, we consider language models as a whole in our second approach where bridging anaphora resolution is formulated as a masked token prediction task (Of-Cloze test). Our formulation produces optimistic results without any fine-tuning, which indicates that pre-trained language models substantially capture bridging inference. Our further investigation shows that the distance between anaphor-antecedent and the context provided to language models play an important role in the inference.



rate research

Read More

Transformer-based language models pre-trained on large amounts of text data have proven remarkably successful in learning generic transferable linguistic representations. Here we study whether structural guidance leads to more human-like systematic linguistic generalization in Transformer language models without resorting to pre-training on very large amounts of data. We explore two general ideas. The Generative Parsing idea jointly models the incremental parse and word sequence as part of the same sequence modeling task. The Structural Scaffold idea guides the language models representation via additional structure loss that separately predicts the incremental constituency parse. We train the proposed models along with a vanilla Transformer language model baseline on a 14 million-token and a 46 million-token subset of the BLLIP dataset, and evaluate models syntactic generalization performances on SG Test Suites and sized BLiMP. Experiment results across two benchmarks suggest converging evidence that generative structural supervisions can induce more robust and humanlike linguistic generalization in Transformer language models without the need for data intensive pre-training.
Purely character-based language models (LMs) have been lagging in quality on large scale datasets, and current state-of-the-art LMs rely on word tokenization. It has been assumed that injecting the prior knowledge of a tokenizer into the model is essential to achieving competitive results. In this paper, we show that contrary to this conventional wisdom, tokenizer-free LMs with sufficient capacity can achieve competitive performance on a large scale dataset. We train a vanilla transformer network with 40 self-attention layers on the One Billion Word (lm1b) benchmark and achieve a new state of the art for tokenizer-free LMs, pushing these models to be on par with their word-based counterparts.
Lexical inference in context (LIiC) is the task of recognizing textual entailment between two very similar sentences, i.e., sentences that only differ in one expression. It can therefore be seen as a variant of the natural language inference task that is focused on lexical semantics. We formulate and evaluate the first approaches based on pretrained language models (LMs) for this task: (i) a few-shot NLI classifier, (ii) a relation induction approach based on handcrafted patterns expressing the semantics of lexical inference, and (iii) a variant of (ii) with patterns that were automatically extracted from a corpus. All our approaches outperform the previous state of the art, showing the potential of pretrained LMs for LIiC. In an extensive analysis, we investigate factors of success and failure of our three approaches.
We investigate multi-scale transformer language models that learn representations of text at multiple scales, and present three different architectures that have an inductive bias to handle the hierarchical nature of language. Experiments on large-scale language modeling benchmarks empirically demonstrate favorable likelihood vs memory footprint trade-offs, e.g. we show that it is possible to train a hierarchical variant with 30 layers that has 23% smaller memory footprint and better perplexity, compared to a vanilla transformer with less than half the number of layers, on the Toronto BookCorpus. We analyze the advantages of learned representations at multiple scales in terms of memory footprint, compute time, and perplexity, which are particularly appealing given the quadratic scaling of transformers run time and memory usage with respect to sequence length.
Humans carry stereotypic tacit assumptions (STAs) (Prince, 1978), or propositional beliefs about generic concepts. Such associations are crucial for understanding natural language. We construct a diagnostic set of word prediction prompts to evaluate whether recent neural contextualized language models trained on large text corpora capture STAs. Our prompts are based on human responses in a psychological study of conceptual associations. We find models to be profoundly effective at retrieving concepts given associated properties. Our results demonstrate empirical evidence that stereotypic conceptual representations are captured in neural models derived from semi-supervised linguistic exposure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا