Do you want to publish a course? Click here

Fano resonance enabled infrared nano-imaging of local strain in bilayer graphene

303   0   0.0 ( 0 )
 Added by Zhiwen Shi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene through probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical (TO) phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of ~0.002% for the strain detection. Our studies demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.



rate research

Read More

In twisted bilayer graphene (TBG) a moire pattern forms that introduces a new length scale to the material. At the magic twist angle of 1.1{deg}, this causes a flat band to form, yielding emergent properties such as correlated insulator behavior and superconductivity [1-4]. In general, the moire structure in TBG varies spatially, influencing the local electronic properties [5-9] and hence the outcome of macroscopic charge transport experiments. In particular, to understand the wide variety observed in the phase diagrams and critical temperatures, a more detailed understanding of the local moire variation is needed [10]. Here, we study spatial and temporal variations of the moire pattern in TBG using aberration-corrected Low Energy Electron Microscopy (AC-LEEM) [11,12]. The spatial variation we find is lower than reported previously. At 500{deg}C, we observe thermal fluctuations of the moire lattice, corresponding to collective atomic displacements of less than 70pm on a time scale of seconds [13], homogenizing the sample. Despite previous concerns, no untwisting of the layers is found, even at temperatures as high as 600{deg}C [14,15]. From these observations, we conclude that thermal annealing can be used to decrease the local disorder in TBG samples. Finally, we report the existence of individual edge dislocations in the atomic and moire lattice. These topological defects break translation symmetry and are anticipated to exhibit unique local electronic properties.
We report a combined nano-photocurrent and infrared nanoscopy study of twisted bilayer graphene (TBG) enabling access to the local electronic phenomena at length scales as short as 20 nm. We show that the photocurrent changes sign at carrier densities tracking the local superlattice density of states of TBG. We use this property to identify domains of varying local twist angle by local photo-thermoelectric effect. Consistent with the photocurrent study, infrared nano-imaging experiments reveal optical conductivity features dominated by twist-angle dependent interband transitions. Our results provide a fast and robust method for mapping the electronic structure of TBG and suggest that similar methods can be broadly applied to probe electronic inhomogeneities of moire superlattices in other van der Waals heterostructures.
Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the exact twist angle and its spatial homogeneity, there is a need for a fast and non-invasive characterization technique of the local twist angle, to be applied preferably right after stacking. We demonstrate that confocal Raman spectroscopy can be utilized to spatially map the twist angle in stacked bilayer graphene with an angle resolution of 0.01{deg} for angles between 6.5{deg} and 8{deg} when using a green excitation laser. The twist angles can directly be extracted from the moire superlattice-activated Raman scattering process of the transverse acoustic (TA) phonon mode. Furthermore, we show that the width of the TA Raman peak contains valuable information on spatial twist-angle variations on length scales below the laser spot size of ~ 500 nm.
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B = 18 T we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow sqrt{B} for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.
Strain engineering of graphene takes advantage of one of the most dramatic responses of Dirac electrons enabling their manipulation via strain-induced pseudo-magnetic fields. Numerous theoretically proposed devices, such as resonant cavities and valley filters, as well as novel phenomena, such as snake states, could potentially be enabled via this effect. These proposals, however, require strong, spatially oscillating magnetic fields while to date only the generation and effects of pseudo-gauge fields which vary at a length scale much larger than the magnetic length have been reported. Here we create a periodic pseudo-gauge field profile using periodic strain that varies at the length scale comparable to the magnetic length and study its effects on Dirac electrons. A periodic strain profile is achieved by pulling on graphene with extreme (>10%) strain and forming nanoscale ripples, akin to a plastic wrap pulled taut at its edges. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain results in a new quantization different from the familiar Landau quantization observed in previous studies. We also find that graphene ripples are characterized by large variations in carbon-carbon bond length, directly impacting the electronic coupling between atoms, which within a single ripple can be as different as in two different materials. The result is a single graphene sheet that effectively acts as an electronic superlattice. Our results thus also establish a novel approach to synthesize an effective 2D lateral heterostructure - by periodic modulation of lattice strain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا