Do you want to publish a course? Click here

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

194   0   0.0 ( 0 )
 Added by Jia-Xin Zhuang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While self-supervised representation learning (SSL) has received widespread attention from the community, recent research argue that its performance will suffer a cliff fall when the model size decreases. The current method mainly relies on contrastive learning to train the network and in this work, we propose a simple yet effective Distilled Contrastive Learning (DisCo) to ease the issue by a large margin. Specifically, we find the final embedding obtained by the mainstream SSL methods contains the most fruitful information, and propose to distill the final embedding to maximally transmit a teachers knowledge to a lightweight model by constraining the last embedding of the student to be consistent with that of the teacher. In addition, in the experiment, we find that there exists a phenomenon termed Distilling BottleNeck and present to enlarge the embedding dimension to alleviate this problem. Our method does not introduce any extra parameter to lightweight models during deployment. Experimental results demonstrate that our method achieves the state-of-the-art on all lightweight models. Particularly, when ResNet-101/ResNet-50 is used as teacher to teach EfficientNet-B0, the linear result of EfficientNet-B0 on ImageNet is very close to ResNet-101/ResNet-50, but the number of parameters of EfficientNet-B0 is only 9.4%/16.3% of ResNet-101/ResNet-50. Code is available at https://github. com/Yuting-Gao/DisCo-pytorch.



rate research

Read More

Generalising deep networks to novel domains without manual labels is challenging to deep learning. This problem is intrinsically difficult due to unpredictable changing nature of imagery data distributions in novel domains. Pre-learned knowledge does not transfer well without making strong assumptions about the learned and the novel domains. Different methods have been studied to address the underlying problem based on different assumptions, e.g. from domain adaptation to zero-shot and few-shot learning. In this work, we address this problem by transfer clustering that aims to learn a discriminative latent space of the unlabelled target data in a novel domain by knowledge transfer from labelled related domains. Specifically, we want to leverage relative (pairwise) imagery information, which is freely available and intrinsic to a target domain, to model the target domain image distribution characteristics as well as the prior-knowledge learned from related labelled domains to enable more discriminative clustering of unlabelled target data. Our method mitigates nontransferrable prior-knowledge by self-supervision, benefiting from both transfer and self-supervised learning. Extensive experiments on four datasets for image clustering tasks reveal the superiority of our model over the state-of-the-art transfer clustering techniques. We further demonstrate its competitive transferability on four zero-shot learning benchmarks.
For artificial learning systems, continual learning over time from a stream of data is essential. The burgeoning studies on supervised continual learning have achieved great progress, while the study of catastrophic forgetting in unsupervised learning is still blank. Among unsupervised learning methods, self-supervise learning method shows tremendous potential on visual representation without any labeled data at scale. To improve the visual representation of self-supervised learning, larger and more varied data is needed. In the real world, unlabeled data is generated at all times. This circumstance provides a huge advantage for the learning of the self-supervised method. However, in the current paradigm, packing previous data and current data together and training it again is a waste of time and resources. Thus, a continual self-supervised learning method is badly needed. In this paper, we make the first attempt to implement the continual contrastive self-supervised learning by proposing a rehearsal method, which keeps a few exemplars from the previous data. Instead of directly combining saved exemplars with the current data set for training, we leverage self-supervised knowledge distillation to transfer contrastive information among previous data to the current network by mimicking similarity score distribution inferred by the old network over a set of saved exemplars. Moreover, we build an extra sample queue to assist the network to distinguish between previous and current data and prevent mutual interference while learning their own feature representation. Experimental results show that our method performs well on CIFAR100 and ImageNet-Sub. Compared with the baselines, which learning tasks without taking any technique, we improve the image classification top-1 accuracy by 1.60% on CIFAR100, 2.86% on ImageNet-Sub and 1.29% on ImageNet-Full under 10 incremental steps setting.
94 - Bian Du , Xiang Gao , Wei Hu 2021
Point clouds have attracted increasing attention. Significant progress has been made in methods for point cloud analysis, which often requires costly human annotation as supervision. To address this issue, we propose a novel self-contrastive learning for self-supervised point cloud representation learning, aiming to capture both local geometric patterns and nonlocal semantic primitives based on the nonlocal self-similarity of point clouds. The contributions are two-fold: on the one hand, instead of contrasting among different point clouds as commonly employed in contrastive learning, we exploit self-similar point cloud patches within a single point cloud as positive samples and otherwise negative ones to facilitate the task of contrastive learning. On the other hand, we actively learn hard negative samples that are close to positive samples for discriminative feature learning. Experimental results show that the proposed method achieves state-of-the-art performance on widely used benchmark datasets for self-supervised point cloud segmentation and transfer learning for classification.
Leveraging temporal information has been regarded as essential for developing video understanding models. However, how to properly incorporate temporal information into the recent successful instance discrimination based contrastive self-supervised learning (CSL) framework remains unclear. As an intuitive solution, we find that directly applying temporal augmentations does not help, or even impair video CSL in general. This counter-intuitive observation motivates us to re-design existing video CSL frameworks, for better integration of temporal knowledge. To this end, we present Temporal-aware Contrastive self-supervised learningTaCo, as a general paradigm to enhance video CSL. Specifically, TaCo selects a set of temporal transformations not only as strong data augmentation but also to constitute extra self-supervision for video understanding. By jointly contrasting instances with enriched temporal transformations and learning these transformations as self-supervised signals, TaCo can significantly enhance unsupervised video representation learning. For instance, TaCo demonstrates consistent improvement in downstream classification tasks over a list of backbones and CSL approaches. Our best model achieves 85.1% (UCF-101) and 51.6% (HMDB-51) top-1 accuracy, which is a 3% and 2.4% relative improvement over the previous state-of-the-art.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا