No Arabic abstract
Subword units are commonly used for end-to-end automatic speech recognition (ASR), while a fully acoustic-oriented subword modeling approach is somewhat missing. We propose an acoustic data-driven subword modeling (ADSM) approach that adapts the advantages of several text-based and acoustic-based subword methods into one pipeline. With a fully acoustic-oriented label design and learning process, ADSM produces acoustic-structured subword units and acoustic-matched target sequence for further ASR training. The obtained ADSM labels are evaluated with different end-to-end ASR approaches including CTC, RNN-Transducer and attention models. Experiments on the LibriSpeech corpus show that ADSM clearly outperforms both byte pair encoding (BPE) and pronunciation-assisted subword modeling (PASM) in all cases. Detailed analysis shows that ADSM achieves acoustically more logical word segmentation and more balanced sequence length, and thus, is suitable for both time-synchronous and label-synchronous models. We also briefly describe how to apply acoustic-based subword regularization and unseen text segmentation using ADSM.
End-to-end Speech-to-text Translation (E2E-ST), which directly translates source language speech to target language text, is widely useful in practice, but traditional cascaded approaches (ASR+MT) often suffer from error propagation in the pipeline. On the other hand, existing end-to-end solutions heavily depend on the source language transcriptions for pre-training or multi-task training with Automatic Speech Recognition (ASR). We instead propose a simple technique to learn a robust speech encoder in a self-supervised fashion only on the speech side, which can utilize speech data without transcription. This technique termed Masked Acoustic Modeling (MAM), not only provides an alternative solution to improving E2E-ST, but also can perform pre-training on any acoustic signals (including non-speech ones) without annotation. We conduct our experiments over 8 different translation directions. In the setting without using any transcriptions, our technique achieves an average improvement of +1.1 BLEU, and +2.3 BLEU with MAM pre-training. Pre-training of MAM with arbitrary acoustic signals also has an average improvement with +1.6 BLEU for those languages. Compared with ASR multi-task learning solution, which replies on transcription during training, our pre-trained MAM model, which does not use transcription, achieves similar accuracy.
Training a code-switching end-to-end automatic speech recognition (ASR) model normally requires a large amount of data, while code-switching data is often limited. In this paper, three novel approaches are proposed for code-switching data augmentation. Specifically, they are audio splicing with the existing code-switching data, and TTS with new code-switching texts generated by word translation or word insertion. Our experiments on 200 hours Mandarin-English code-switching dataset show that all the three proposed approaches yield significant improvements on code-switching ASR individually. Moreover, all the proposed approaches can be combined with recent popular SpecAugment, and an addition gain can be obtained. WER is significantly reduced by relative 24.0% compared to the system without any data augmentation, and still relative 13.0% gain compared to the system with only SpecAugment
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from another person or media device in proximity need to be ignored. We propose two end-to-end models to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake-up word part of an audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. The first method is called Multi-source Attention where the attention mechanism takes both the speaker information and decoder state into consideration. The second method directly learns a frame-level mask on top of the encoder output. We also explore a multi-task learning setup where we use the ground truth of the mask to guide the learner. Given that audio data with interfering speech is rare in our training data set, we also propose a way to synthesize noisy speech from clean speech to mitigate the mismatch between training and test data. Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live data with interfering background speech without significantly degrading on clean speech.
Measuring performance of an automatic speech recognition (ASR) system without ground-truth could be beneficial in many scenarios, especially with data from unseen domains, where performance can be highly inconsistent. In conventional ASR systems, several performance monitoring (PM) techniques have been well-developed to monitor performance by looking at tri-phone posteriors or pre-softmax activations from neural network acoustic modeling. However, strategies for monitoring more recently developed end-to-end ASR systems have not yet been explored, and so that is the focus of this paper. We adapt previous PM measures (Entropy, M-measure and Auto-encoder) and apply our proposed RNN predictor in the end-to-end setting. These measures utilize the decoder output layer and attention probability vectors, and their predictive power is measured with simple linear models. Our findings suggest that decoder-level features are more feasible and informative than attention-level probabilities for PM measures, and that M-measure on the decoder posteriors achieves the best overall predictive performance with an average prediction error 8.8%. Entropy measures and RNN-based prediction also show competitive predictability, especially for unseen conditions.
End-To-End speech recognition have become increasingly popular in mandarin speech recognition and achieved delightful performance. Mandarin is a tonal language which is different from English and requires special treatment for the acoustic modeling units. There have been several different kinds of modeling units for mandarin such as phoneme, syllable and Chinese character. In this work, we explore two major end-to-end models: connectionist temporal classification (CTC) model and attention based encoder-decoder model for mandarin speech recognition. We compare the performance of three different scaled modeling units: context dependent phoneme(CDP), syllable with tone and Chinese character. We find that all types of modeling units can achieve approximate character error rate (CER) in CTC model and the performance of Chinese character attention model is better than syllable attention model. Furthermore, we find that Chinese character is a reasonable unit for mandarin speech recognition. On DidiCallcenter task, Chinese character attention model achieves a CER of 5.68% and CTC model gets a CER of 7.29%, on the other DidiReading task, CER are 4.89% and 5.79%, respectively. Moreover, attention model achieves a better performance than CTC model on both datasets.