Do you want to publish a course? Click here

A Modified Adaptive Genetic Algorithm for Multi-product Multi-period Inventory Routing Problem

66   0   0.0 ( 0 )
 Added by Seyed Sajjad Fazeli
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Recent developments in urbanization and e-commerce have pushed businesses to deploy efficient systems to decrease their supply chain cost. Vendor Managed Inventory (VMI) is one of the most widely used strategies to effectively manage supply chains with multiple parties. VMI implementation asks for solving the Inventory Routing Problem (IRP). This study considers a multi-product multi-period inventory routing problem, including a supplier, set of customers, and a fleet of heterogeneous vehicles. Due to the complex nature of the IRP, we developed a Modified Adaptive Genetic Algorithm (MAGA) to solve a variety of instances efficiently. As a benchmark, we considered the results obtained by Cplex software and an efficient heuristic from the literature. Through extensive computational experiments on a set of randomly generated instances, and using different metrics, we show that our approach distinctly outperforms the other two methods.



rate research

Read More

Quantum annealing (QA) is a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC), and it has shown significant computational advantages in solving combinatorial optimization problems such as vehicle routing problems (VRP) when compared to classical algorithms. This paper presents a QA approach for solving a variant VRP known as multi-depot capacitated vehicle routing problem (MDCVRP). This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management. We consider heterogeneous depots and vehicles with different capacities. Given a set of heterogeneous depots, the number of vehicles in each depot, heterogeneous depot/vehicle capacities, and a set of spatially distributed customer locations, the MDCVRP attempts to identify routes of various vehicles satisfying the capacity constraints such as that all the customers are served. We model MDCVRP as a quadratic unconstrained binary optimization (QUBO) problem, which minimizes the overall distance traveled by all the vehicles across all depots given the capacity constraints. Furthermore, we formulate a QUBO model for dynamic version of MDCVRP known as D-MDCVRP, which involves dynamic rerouting of vehicles to real-time customer requests. We discuss the problem complexity and a solution approach to solving MDCVRP and D-MDCVRP on quantum annealing hardware from D-Wave.
365 - Hu Qin , Zizhen Zhang , Yubin Xie 2014
This paper introduces a multi-period inspector scheduling problem (MPISP), which is a new variant of the multi-trip vehicle routing problem with time windows (VRPTW). In the MPISP, each inspector is scheduled to perform a route in a given multi-period planning horizon. At the end of each period, each inspector is not required to return to the depot but has to stay at one of the vertices for recuperation. If the remaining time of the current period is insufficient for an inspector to travel from his/her current vertex $A$ to a certain vertex B, he/she can choose either waiting at vertex A until the start of the next period or traveling to a vertex C that is closer to vertex B. Therefore, the shortest transit time between any vertex pair is affected by the length of the period and the departure time. We first describe an approach of computing the shortest transit time between any pair of vertices with an arbitrary departure time. To solve the MPISP, we then propose several local search operators adapted from classical operators for the VRPTW and integrate them into a tabu search framework. In addition, we present a constrained knapsack model that is able to produce an upper bound for the problem. Finally, we evaluate the effectiveness of our algorithm with extensive experiments based on a set of test instances. Our computational results indicate that our approach generates high-quality solutions.
Column generation is often used to solve multi-commodity flow problems. A program for column generation always includes a module that solves a linear equation. In this paper, we address three major issues in solving linear problem during column generation procedure which are (1) how to employ the sparse property of the coefficient matrix; (2) how to reduce the size of the coefficient matrix; and (3) how to reuse the solution to a similar equation. To this end, we first analyze the sparse property of coefficient matrix of linear equations and find that the matrices occurring in iteration are very sparse. Then, we present an algorithm locSolver (for localized system solver) for linear equations with sparse coefficient matrices and right-hand-sides. This algorithm can reduce the number of variables. After that, we present the algorithm incSolver (for incremental system solver) which utilizes similarity in the iterations of the program for a linear equation system. All three techniques can be used in column generation of multi-commodity problems. Preliminary numerical experiments show that the incSolver is significantly faster than the existing algorithms. For example, random test cases show that incSolver is at least 37 times and up to 341 times faster than popular solver LAPACK.
123 - Canqi Yao , Shibo Chen , 2021
Logistics has gained great attentions with the prosperous development of commerce, which is often seen as the classic optimal vehicle routing problem. Meanwhile, electric vehicle (EV) has been widely used in logistic fleet to curb the emission of green house gases in recent years. Solving the optimization problem of joint routing and charging of multiple EVs is in a urgent need, whose objective function includes charging time, charging cost, EVs travel time, usage fees of EV and revenue from serving customers. This joint problem is formulated as a mixed integer programming (MIP) problem, which, however, is NP-hard due to integer restrictions and bilinear terms from the coupling between routing and charging decisions. The main contribution of this paper lies at proposing an efficient two stage algorithm that can decompose the original MIP problem into two linear programming (LP) problems, by exploiting the exactness of LP relaxation and eliminating the coupled term. This algorithm can achieve a nearoptimal solution in polynomial time. In addition, another variant algorithm is proposed based on the two stage one, to further improve the quality of solution.
We consider the dynamic inventory problem with non-stationary demands. It has long been known that non-stationary (s, S) policies are optimal for this problem. However, finding optimal policy parameters remains a computational challenge as it requires solving a large-scale stochastic dynamic program. To address this, we devise a recursion-free approximation for the optimal cost function of the problem. This enables us to compute policy parameters heuristically, without resorting to a stochastic dynamic program. The heuristic is easy-to-understand and -use since it follows by elementary methods of convex minimization and shortest paths, yet it is very effective and outperforms earlier heuristics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا