Do you want to publish a course? Click here

An 86-GHz search for Pulsars in the Galactic Center with the Atacama Large Millimeter/submillimeter Array

66   0   0.0 ( 0 )
 Added by Kuo Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the first pulsar and transient survey of the Galactic Center (GC) with the Atacama Large Millimeter/submillimeter Array (ALMA). The observations were conducted during the Global Millimeter VLBI Array campaign in 2017 and 2018. We carry out searches using timeseries of both total intensity and other polarization components in the form of Stokes parameters. We incorporate acceleration and its derivative in the pulsar search, and also search in segments of the entire observation to compensate for potential orbital motion of the pulsar. While no new pulsar is found, our observations yield the polarization profile of the GC magnetar PSR J1745-2900 at mm-wavelength for the first time, which turns out to be nearly 100 % linearly polarized. Additionally, we estimate the survey sensitivity placed by both system and red noise, and evaluate its capability of finding pulsars in orbital motion with either Sgr A* or a binary companion. We show that the survey is sensitive to only the most luminous pulsars in the known population, and future observations with ALMA in Band-1 will deliver significantly deeper survey sensitivity on the GC pulsar population.



rate research

Read More

The Atacama Large Millimeter/submillimeter Array (ALMA) is an international radio telescope under construction in the Atacama Desert of northern Chile. ALMA is situated on a dry site at 5000 m elevation, allowing excellent atmospheric transmission over the instrument wavelength range of 0.3 to 10 mm. ALMA will consist of two arrays of high-precision antennas. One, of up to 64 12-m diameter antennas, is reconfigurable in multiple patterns ranging in size from 150 meters up to ~15 km. A second array is comprised of a set of four 12-m and twelve 7-m antennas operating in one of two closely packed configurations ~50 m in diameter. The instrument will provide both interferometric and total-power astronomical information on atomic, molecular and ionized gas and dust in the solar system, our Galaxy, and the nearby to high-redshift universe. In this paper we outline the scientific drivers, technical challenges and planned progress of ALMA.
(abridged) The Atacama Large Millimeter/submillimeter Array (ALMA) was the top-ranked priority for a new ground-based facility in the 2000 Canadian Long Range Plan. Ten years later, at the time of LRP2010, ALMA construction was well underway, with first science observations anticipated for 2011. In the past 8 years, ALMA has proved itself to be a high-impact, high-demand observatory, with record numbers of proposals submitted to the annual calls and large numbers of highly cited scientific papers across fields from protoplanetary disks to high-redshift galaxies and quasars. The LRP2010 ALMA white paper laid out 8 specific metrics that could be used to judge the success of Canadas participation in ALMA. Among these metrics were publications (number; impact), collaborations (international; multi-wavelength), and student training. To call out one particular metric, Canadians are making excellent use of ALMA in training graduate students and postdocs: as of June 2018, 12 of 23 Canadian first-author papers were led by a graduate student, and a further 4 papers were led by postdocs. All 8 metrics argue for Canadas involvement in ALMA over the past decade to be judged a success. The successful achievement of these wide-ranging goals argues strongly for Canadas continuing participation in ALMA over the next decade and beyond. Looking forward, our community needs to: (1) maintain Canadian access to ALMA and our competitiveness in using ALMA; (2) preserve full Canadian funding for our share of ALMA operations; (3) identify components of ALMA development in which Canada can play a significant role, including stimulating expertise in submillimetre instrumentation to capitalize on future opportunities; and (4) keep Canadians fully trained and engaged in ALMA, as new capabilities become available, reaching the widest possible community of potential users.
We have developed an FX-architecture digital spectro-correlator for the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeter Array. The correlator is able to simultaneously process four pairs of dual polarization signals with the bandwidth of 2 GHz, which are received by up to sixteen antennas. It can calculate auto- and cross-correlation spectra including cross-polarization in all combinations of all the antennas, and output correlation spectra with flexible spectral configuration such as multiple frequency ranges and multiple frequency resolutions. Its spectral dynamic range is estimated to be higher than 10^4 relative to Tsys from processing results of thermal noise for eight hours with a typical correlator configuration. The sensitivity loss is also confirmed to be 0.9 % with the same configuration. In this paper, we report the detailed design of the correlator and the verification results of the developed hardware.
The Atacama Large Millimeter/submillimeter Array(ALMA) Band 1 receiver covers the 35-50 GHz frequency band. Development of prototype receivers, including the key components and subsystems has been completed and two sets of prototype receivers were fully tested. We will provide an overview of the ALMA Band 1 science goals, and its requirements and design for use on the ALMA. The receiver development status will also be discussed and the infrastructure, integration, evaluation of fully-assembled band 1 receiver system will be covered. Finally, a discussion of the technical and management challenges encountered will be presented.
Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low- contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا