Do you want to publish a course? Click here

Context-Aware Interaction Network for Question Matching

87   0   0.0 ( 0 )
 Added by Zuohui Fu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Impressive milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent semantic connections between two sentences. However, these cross-attention mechanisms focus on word-level links between the two inputs, neglecting the importance of contextual information. We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship. Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information, and (2) a gate fusion layer to flexibly interpolate aligned representations. We apply multiple stacked interaction blocks to produce alignments at different levels and gradually refine the attention results. Experiments on two question matching datasets and detailed analyses confirm the effectiveness of our model.



rate research

Read More

Knowledge graph question answering is an important technology in intelligent human-robot interaction, which aims at automatically giving answer to human natural language question with the given knowledge graph. For the multi-relation question with higher variety and complexity, the tokens of the question have different priority for the triples selection in the reasoning steps. Most existing models take the question as a whole and ignore the priority information in it. To solve this problem, we propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process. In addition, we incorporate graph context information into knowledge graph embedding model to increase the ability to represent entities and relations. We use it to initialize the QA2MN model and fine-tune it in the training process. We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering. The result demonstrates that QA2MN achieves state-of-the-art Hits@1 accuracy on the two datasets, which validates the effectiveness of our model.
In education, open-ended quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.
Automatic question generation according to an answer within the given passage is useful for many applications, such as question answering system, dialogue system, etc. Current neural-based methods mostly take two steps which extract several important sentences based on the candidate answer through manual rules or supervised neural networks and then use an encoder-decoder framework to generate questions about these sentences. These approaches neglect the semantic relations between the answer and the context of the whole passage which is sometimes necessary for answering the question. To address this problem, we propose the Weak Supervision Enhanced Generative Network (WeGen) which automatically discovers relevant features of the passage given the answer span in a weakly supervised manner to improve the quality of generated questions. More specifically, we devise a discriminator, Relation Guider, to capture the relations between the whole passage and the associated answer and then the Multi-Interaction mechanism is deployed to transfer the knowledge dynamically for our question generation system. Experiments show the effectiveness of our method in both automatic evaluations and human evaluations.
243 - Hongwei Zeng , Zhuo Zhi , Jun Liu 2019
In this paper, we study automatic question generation, the task of creating questions from corresponding text passages where some certain spans of the text can serve as the answers. We propose an Extended Answer-aware Network (EAN) which is trained with Word-based Coverage Mechanism (WCM) and decodes with Uncertainty-aware Beam Search (UBS). The EAN represents the target answer by its surrounding sentence with an encoder, and incorporates the information of the extended answer into paragraph representation with gated paragraph-to-answer attention to tackle the problem of the inadequate representation of the target answer. To reduce undesirable repetition, the WCM penalizes repeatedly attending to the same words at different time-steps in the training stage. The UBS aims to seek a better balance between the model confidence in copying words from an input text paragraph and the confidence in generating words from a vocabulary. We conduct experiments on the SQuAD dataset, and the results show our approach achieves significant performance improvement.
Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا