No Arabic abstract
Establishing cause-effect relationships from observational data often relies on untestable assumptions. It is crucial to know whether, and to what extent, the conclusions drawn from non-experimental studies are robust to potential unmeasured confounding. In this paper, we focus on the average causal effect (ACE) as our target of inference. We build on the work of Franks et al. (2019)and Robins (2000) by specifying non-identified sensitivity parameters that govern a contrast between the conditional (on measured covariates) distributions of the outcome under treatment (control) between treated and untreated individuals. We use semiparametric theory to derive the non-parametric efficient influence function of the ACE, for fixed sensitivity parameters. We use this influence function to construct a one-step bias-corrected estimator of the ACE. Our estimator depends on semiparametric models for the distribution of the observed data; importantly, these models do not impose any restrictions on the values of sensitivity analysis parameters. We establish sufficient conditions ensuring that our estimator has root-n asymptotics. We use our methodology to evaluate the causal effect of smoking during pregnancy on birth weight. We also evaluate the performance of estimation procedure in a simulation study.
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametric identification of natural direct and indirect effects in the presence of unmeasured mediator-outcome confounding by leveraging heteroskedasticity restrictions on the observed data law. For inference, we develop semiparametric estimators that remain consistent under partial misspecifications of the observed data model. We illustrate the proposed estimators through both simulations and an application to evaluate the effect of self-efficacy on fatigue among health care workers during the COVID-19 outbreak.
When drawing causal inference from observational data, there is always concern about unmeasured confounding. One way to tackle this is to conduct a sensitivity analysis. One widely-used sensitivity analysis framework hypothesizes the existence of a scalar unmeasured confounder U and asks how the causal conclusion would change were U measured and included in the primary analysis. Works along this line often make various parametric assumptions on U, for the sake of mathematical and computational simplicity. In this article, we substantively further this line of research by developing a valid sensitivity analysis that leaves the distribution of U unrestricted. Our semiparametric estimator has three desirable features compared to many existing methods in the literature. First, our method allows for a larger and more flexible family of models, and mitigates observable implications (Franks et al., 2019). Second, our methods work seamlessly with any primary analysis that models the outcome regression parametrically. Third, our method is easy to use and interpret. We construct both pointwise confidence intervals and confidence bands that are uniformly valid over a given sensitivity parameter space, thus formally accounting for unknown sensitivity parameters. We apply our proposed method on an influential yet controversial study of the causal relationship between war experiences and political activeness using observational data from Uganda.
No unmeasured confounding is often assumed in estimating treatment effects in observational data when using approaches such as propensity scores and inverse probability weighting. However, in many such studies due to the limitation of the databases, collected confounders are not exhaustive, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounders approach of Carnegie et al. (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the treatment assignment, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic EM and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease (IBD).
Bayesian causal inference offers a principled approach to policy evaluation of proposed interventions on mediators or time-varying exposures. We outline a general approach to the estimation of causal quantities for settings with time-varying confounding, such as exposure-induced mediator-outcome confounders. We further extend this approach to propose two Bayesian data fusion (BDF) methods for unmeasured confounding. Using informative priors on quantities relating to the confounding bias parameters, our methods incorporate data from an external source where the confounder is measured in order to make inferences about causal estimands in the main study population. We present results from a simulation study comparing our data fusion methods to two common frequentist correction methods for unmeasured confounding bias in the mediation setting. We also demonstrate our method with an investigation of the role of stage at cancer diagnosis in contributing to Black-White colorectal cancer survival disparities.
Data-driven individualized decision making has recently received increasing research interests. Most existing methods rely on the assumption of no unmeasured confounding, which unfortunately cannot be ensured in practice especially in observational studies. Motivated by the recent proposed proximal causal inference, we develop several proximal learning approaches to estimating optimal individualized treatment regimes (ITRs) in the presence of unmeasured confounding. In particular, we establish several identification results for different classes of ITRs, exhibiting the trade-off between the risk of making untestable assumptions and the value function improvement in decision making. Based on these results, we propose several classification-based approaches to finding a variety of restricted in-class optimal ITRs and develop their theoretical properties. The appealing numerical performance of our proposed methods is demonstrated via an extensive simulation study and one real data application.