Do you want to publish a course? Click here

An Adversarially-Learned Turing Test for Dialog Generation Models

312   0   0.0 ( 0 )
 Added by Xiang Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The design of better automated dialogue evaluation metrics offers the potential of accelerate evaluation research on conversational AI. However, existing trainable dialogue evaluation models are generally restricted to classifiers trained in a purely supervised manner, which suffer a significant risk from adversarial attacking (e.g., a nonsensical response that enjoys a high classification score). To alleviate this risk, we propose an adversarial training approach to learn a robust model, ATT (Adversarial Turing Test), that discriminates machine-generated responses from human-written replies. In contrast to previous perturbation-based methods, our discriminator is trained by iteratively generating unrestricted and diverse adversarial examples using reinforcement learning. The key benefit of this unrestricted adversarial training approach is allowing the discriminator to improve robustness in an iterative attack-defense game. Our discriminator shows high accuracy on strong attackers including DialoGPT and GPT-3.

rate research

Read More

242 - Yuan Miao , Gongqi Lin , Yidan Hu 2019
Reading comprehension is an important ability of human intelligence. Literacy and numeracy are two most essential foundation for people to succeed at study, at work and in life. Reading comprehension ability is a core component of literacy. In most of the education systems, developing reading comprehension ability is compulsory in the curriculum from year one to year 12. It is an indispensable ability in the dissemination of knowledge. With the emerging artificial intelligence, computers start to be able to read and understand like people in some context. They can even read better than human beings for some tasks, but have little clue in other tasks. It will be very beneficial if we can identify the levels of machine comprehension ability, which will direct us on the further improvement. Turing test is a well-known test of the difference between computer intelligence and human intelligence. In order to be able to compare the difference between people reading and machines reading, we proposed a test called (reading) Comprehension Ability Test (CAT).CAT is similar to Turing test, passing of which means we cannot differentiate people from algorithms in term of their comprehension ability. CAT has multiple levels showing the different abilities in reading comprehension, from identifying basic facts, performing inference, to understanding the intent and sentiment.
Recently, improving the relevance and diversity of dialogue system has attracted wide attention. For a post x, the corresponding response y is usually diverse in the real-world corpus, while the conventional encoder-decoder model tends to output the high-frequency (safe but trivial) responses and thus is difficult to handle the large number of responding styles. To address these issues, we propose the Atom Responding Machine (ARM), which is based on a proposed encoder-composer-decoder network trained by a teacher-student framework. To enrich the generated responses, ARM introduces a large number of molecule-mechanisms as various responding styles, which are conducted by taking different combinations from a few atom-mechanisms. In other words, even a little of atom-mechanisms can make a mickle of molecule-mechanisms. The experiments demonstrate diversity and quality of the responses generated by ARM. We also present generating process to show underlying interpretability for the result.
We introduce the adversarially learned inference (ALI) model, which jointly learns a generation network and an inference network using an adversarial process. The generation network maps samples from stochastic latent variables to the data space while the inference network maps training examples in data space to the space of latent variables. An adversarial game is cast between these two networks and a discriminative network is trained to distinguish between joint latent/data-space samples from the generative network and joint samples from the inference network. We illustrate the ability of the model to learn mutually coherent inference and generation networks through the inspections of model samples and reconstructions and confirm the usefulness of the learned representations by obtaining a performance competitive with state-of-the-art on the semi-supervised SVHN and CIFAR10 tasks.
In response generation task, proper sentimental expressions can obviously improve the human-like level of the responses. However, for real application in online systems, high QPS (queries per second, an indicator of the flow capacity of on-line systems) is required, and a dynamic vocabulary mechanism has been proved available in improving speed of generative models. In this paper, we proposed an emotion-controlled dialog response generation model based on the dynamic vocabulary mechanism, and the experimental results show the benefit of this model.
We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with different levels of fidelity. Furthermore, we show that minimizing the Jensen-Shanon divergence between the generative and inference network is enough to minimize the reconstruction error. The resulting semantically meaningful hierarchical latent structure discovery is exemplified on the CelebA dataset. There, we show that the features learned by our model in an unsupervised way outperform the best handcrafted features. Furthermore, the extracted features remain competitive when compared to several recent deep supervised approaches on an attribute prediction task on CelebA. Finally, we leverage the models inference network to achieve state-of-the-art performance on a semi-supervised variant of the MNIST digit classification task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا