Do you want to publish a course? Click here

Probing Cosmic Dawn : Ages and Star Formation Histories of Candidate $zgeq$9 Galaxies

158   0   0.0 ( 0 )
 Added by Nicolas Laporte
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the spectral energy distributions and physical properties of six galaxies whose photometric redshifts suggest they lie beyond a redshift $zsimeq$9. Each was selected on account of a prominent excess seen in the Spitzer/IRAC 4.5$mu$m band which, for a redshift above $z=9.0$, likely indicates the presence of a rest-frame Balmer break and a stellar component that formed earlier than a redshift $zsimeq10$. In addition to constraining the earlier star formation activity on the basis of fits using stellar population models with BAGPIPES, we have undertaken the necessary, but challenging, follow-up spectroscopy for each candidate using various combinations of Keck/MOSFIRE, VLT/X-shooter, Gemini/FLAMINGOS2 and ALMA. Based on either Lyman-$alpha$ or [OIII] 88 $mu$m emission, we determine a convincing redshift of $z$=8.78 for GN-z-10-3 and a likely redshift of $z$=9.28 for the lensed galaxy MACS0416-JD. For GN-z9-1, we conclude the case remains promising for a source beyond $zsimeq$9. Together with earlier spectroscopic data for MACS1149-JD1, our analysis of this enlarged sample provides further support for a cosmic star formation history extending beyond redshifts $zsimeq$10. We use our best-fit stellar population models to reconstruct the past rest-frame UV luminosities of our sources and discuss the implications for tracing earlier progenitors of such systems with the James Webb Space Telescope.



rate research

Read More

We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the efficacy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, red and dead galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.
We present analytical reconstructions of type Ia supernova (SN Ia) delay time distributions (DTDs) by way of two independent methods: by a Markov chain Monte Carlo best-fit technique comparing the volumetric SN Ia rate history to todays compendium cosmic star-formation history, and secondly through a maximum likelihood analysis of the star formation rate histories of individual galaxies in the GOODS/CANDELS field, in comparison to their resultant SN Ia yields. We adopt a flexible skew-normal DTD model, which could match a wide range of physically motivated DTD forms. We find a family of solutions that are essentially exponential DTDs, similar in shape to the $betaapprox-1$ power-law DTDs, but with more delayed events (>1 Gyr in age) than prompt events (<1 Gyr). Comparing these solutions to delay time measures separately derived from field galaxies and galaxy clusters, we find the skew-normal solutions can accommodate both without requiring a different DTD form in different environments. These model fits are generally inconsistent with results from single-degenerate binary population synthesis models, and are seemingly supportive of double-degenerate progenitors for most SN Ia events.
We combine IR, optical and X-ray data from the overlapping, 9.3 square degree NOAO Deep Wide-Field Survey (NDWFS), AGN and Galaxy Evolution Survey (AGES), and XBootes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 < z < 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and AGN emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like (1+z)^3, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.
We study the links between star formation history and structure for a large mass-selected galaxy sample at 0.05 < z_phot < 0.30. The galaxies inhabit a very broad range of environments, from cluster cores to the field. Using HST images, we quantify their structure following Hoyos et al. (2012), and divide them into disturbed and undisturbed. We also visually identify mergers. Additionally, we provide a quantitative measure of the degree of disturbance for each galaxy (roughness). The majority of elliptical and lenticular galaxies have relaxed structure, showing no signs of ongoing star formation. Structurally-disturbed galaxies, which tend to avoid the lowest-density regions, have higher star-formation activity and younger stellar populations than undisturbed systems. Cluster spirals with reduced/quenched star formation have somewhat less disturbed morphologies than spirals with normal star-formation activity, suggesting that these passive spirals have started their morphological transformation into S0s. Visually identified mergers and galaxies not identified as mergers but with similar roughness have similar specific star formation rates and stellar ages. The degree of enhanced star formation is thus linked to the degree of structural disturbance, regardless of whether it is caused by major mergers or not. This suggests that merging galaxies are not special in terms of their higher-than-normal star-formation activity. Any physical process that produces roughness, or regions of enhanced luminosity density, will increase the star-formation activity in a galaxy with similar efficiency. An alternative explanation is that star formation episodes increase the galaxies roughness similarly, regardless of whether they are merger-induced or not.
253 - James Schombert 2014
Surface photometry at 3.6$mu$m is presented for 61 low surface brightness (LSB) galaxies ($mu_o < 19$ 3.6$mu$m mag arcsecs$^{-2}$). The sample covers a range of luminosity from $-$11 to $-$22 in $M_{3.6}$ and size from 1 to 25 kpc. The morphologies in the mid-IR are comparable to those in the optical with 3.6$mu$m imaging reaches similar surface brightness depth as ground-based optical imaging. A majority of the resulting surface brightness profiles are single exponential in shape with very few displaying upward or downward breaks. The mean $V-3.6$ color of LSB is 2.3 with a standard deviation of 0.5. Color-magnitude and two color diagrams are well matched to models of constant star formation, where the spread in color is due to small changes in the star formation rate (SFR) over the last 0.5 Gyrs as also suggested by the specific star formation rate measured by H$alpha$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا