No Arabic abstract
Self-gravitating astronomical objects often show a central plateau in the density profile (core) whose physical origin is hotly debated. Cores are theoretically expected in N-body systems of maximum entropy, however, they are not present in the canonical N-body numerical simulations of cold dark matter (CDM). Our work shows that despite this apparent contradiction between theory and numerical simulations, they are fully consistent. Simply put, cores are characteristic of systems in thermodynamic equilibrium, but thermalizing collisions are purposely suppressed in CDM simulations. When collisions are allowed, N-body numerical simulations develop cored density profiles, in perfect agreement with the theoretical expectation. We compare theory and two types of numerical simulations: (1) when DM particles are self-interacting (SIDM) with enough cross-section, then the effective two-body relaxation timescale becomes shorter than the Hubble time resulting in cored DM haloes. The haloes thus obtained, with masses from dwarf galaxies to galaxy clusters, collapse to a single shape after normalization, and this shape agrees with the polytropic density profile theoretically expected. (2) The inner radii in canonical N-body numerical simulations are always discarded because the use of finite-mass DM particles artificially increases the two-body collision rate. We show that the discarded radii develop cores that are larger than the employed numerical softening and have polytropic shapes independently of halo mass. Our work suggests that the presence of cores in simulated (or observed) density profiles can used as evidence for systems in thermodynamic equilibrium.
We address the issue of numerical convergence in cosmological smoothed particle hydrodynamics simulations using a suite of runs drawn from the EAGLE project. Our simulations adopt subgrid models that produce realistic galaxy populations at a fiducial mass and force resolution, but systematically vary the latter in order to study their impact on galaxy properties. We provide several analytic criteria that help guide the selection of gravitational softening for hydrodynamical simulations, and present results from runs that both adhere to and deviate from them. Unlike dark matter-only simulations, hydrodynamical simulations exhibit a strong sensitivity to gravitational softening, and care must be taken when selecting numerical parameters. Our results--which focus mainly on star formation histories, galaxy stellar mass functions and sizes--illuminate three main considerations. First, softening imposes a minimum resolved escape speed, $v_epsilon$, due to the binding energy between gas particles. Runs that adopt such small softening lengths that $v_epsilon gt 10,{rm km s^{-1}}$ (the sound speed in ionised $sim 10^4,{rm K}$ gas) suffer from reduced effects of photo-heating. Second, feedback from stars or active galactic nuclei may suffer from numerical over-cooling if the gravitational softening length is chosen below a critical value, $epsilon_{rm eFB}$. Third, we note that small softening lengths exacerbate the segregation of stars and dark matter particles in halo centres, often leading to the counter-intuitive result that galaxy sizes {em increase} as softening is reduced. The structure of dark matter haloes in hydrodynamical runs respond to softening in a way that reflects the sensitivity of their galaxy populations to numerical parameters.
We calculate the radial profiles of galaxies where the nuclear region is self-gravitating, consisting of self-interacting dark matter (SIDM) with $F$ degrees of freedom. For sufficiently high density this dark matter becomes collisional, regardless of its behaviour on galaxy scales. Our calculations show a spike in the central density profile, with properties determined by the dark matter microphysics, and the densities can reach the `mean density of a black hole (from dividing the black-hole mass by the volume enclosed by the Schwarzschild radius). For a galaxy halo of given compactness ($chi=2GM/Rc^2$), certain values for the dark matter entropy yield a dense central object lacking an event horizon. For some soft equations of state of the SIDM (e.g. $Fge6$), there are multiple horizonless solutions at given compactness. Although light propagates around and through a sphere composed of dark matter, it is gravitationally lensed and redshifted. While some calculations give non-singular solutions, others yield solutions with a central singularity. In all cases the density transitions smoothly from the central body to the dark-matter envelope around it, and to the galaxys dark matter halo. We propose that pulsar timing observations will be able to distinguish between systems with a centrally dense dark matter sphere (for different equations of state) and conventional galactic nuclei that harbour a supermassive black hole.
The Local Group is a unique environment in which to study the astrophysics of galaxy formation. The proximity of the Milky Way and M31 causes a large fraction of the low-mass halo population to interact with more massive dark matter haloes, which increases their concentrations and strips them of gas and other material. Some low-mass haloes pass through the haloes of the Milky Way or M31 and are either ejected into the field or exchanged between the two primary hosts. We use high resolution gas-dynamical simulations to describe a new class of field halo that passed through the haloes of both the Milky Way and M31 at early times and is almost twice as concentrated as isolated field haloes. These Hermeian haloes are distributed anisotropically at greater distances from the Local Group barycentre than the primary haloes and appear to cluster close to the Milky Way and M31 in projection. We show that some Hermeian haloes can host galaxies that are promising targets for indirect dark matter searches and are competitive with signals from other dwarf galaxies. Hermeian galaxies in the Local Group should be detectable by forthcoming wide-field imaging surveys.
Photoheating of the gas in low-mass dark matter (DM) haloes prevents baryons from cooling, leaving the haloes free of stars. Gas in these dark haloes remains exposed to the ultraviolet background (UVB), and so is expected to emit via fluorescent recombination lines. We present a set of radiative transfer simulations, which model dark haloes as spherical gas clouds in hydrostatic equilibrium with a DM halo potential, and in thermal equilibrium with the UVB at redshift z = 0. We use these simulations to predict surface brightnesses in H-alpha, which we show to have a characteristic ring-shaped morphology for haloes in a narrow mass range between 10^9.5 and 10^9.6 M_sun. We explore how this emission depends on physical parameters such as the DM density profile and the UVB spectrum. We predict the abundance of fluorescent haloes on the sky, and discuss possible strategies for their detection. We demonstrate how detailed observations of fluorescent rings can be used to infer the properties of the haloes which host them, such as their density profiles and the mass-concentration relation, as well as to directly measure the UVB amplitude.
Resolving faint galaxies in large volumes is critical for accurate cosmic reionisation simulations. While less demanding than hydrodynamical simulations, semi-analytic reionisation models still require very large N-body simulations in order to resolve the atomic cooling limit across the whole reionisation history within box sizes $gtrsim 100 , h^{-1} {rm Mpc}$. To facilitate this, we extend the mass resolution of N-body simulations using a Monte Carlo algorithm. We also propose a method to evolve positions of Monte Carlo halos, which can be an input for semi-analytic reionisation models. To illustrate, we present an extended halo catalogue that reaches a mass resolution of $M_text{halo} = 3.2 times 10^7 , h^{-1} text{M}_odot$ in a $105 , h^{-1} {rm Mpc}$ box, equivalent to an N-body simulation with $sim 6800^3$ particles. The resulting halo mass function agrees with smaller volume N-body simulations with higher resolution. Our results also produce consistent two-point correlation functions with analytic halo bias predictions. The extended halo catalogues are applied to the textsc{meraxes} semi-analytic reionisation model, which improves the predictions on stellar mass functions, star formation rate densities and volume-weighted neutral fractions. Comparison of high resolution large volume simulations with both small volume or low resolution simulations confirms that both low resolution and small volume simulations lead to reionisation ending too rapidly. Lingering discrepancies between the star formation rate functions predicted with and without our extensions can be traced to the uncertain contribution of satellite galaxies.