A remark on a finiteness of purely cosmetic surgeries


Abstract in English

By estimating the Turaev genus or the dealternation number, which leads to an estimate of knot floer thickness, in terms of the genus and the braid index, we show that a knot $K$ in $S^{3}$ does not admit purely cosmetic surgery whenever $g(K)geq frac{3}{2}b(K)$, where $g(K)$ and $b(K)$ denotes the genus and the braid index, respectively. In particular, this establishes a finiteness of purely cosmetic surgeries; for fixed $b$, all but finitely many knots with braid index $b$ satisfies the cosmetic surgery conjecture.

Download