Do you want to publish a course? Click here

Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural Networks

321   0   0.0 ( 0 )
 Added by Yingtong Dou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph Neural Networks (GNNs) have been widely used for the representation learning of various structured graph data, typically through message passing among nodes by aggregating their neighborhood information via different operations. While promising, most existing GNNs oversimplified the complexity and diversity of the edges in the graph, and thus inefficient to cope with ubiquitous heterogeneous graphs, which are typically in the form of multi-relational graph representations. In this paper, we propose RioGNN, a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture, to navigate complexity of neural network structures whilst maintaining relation-dependent representations. We first construct a multi-relational graph, according to the practical task, to reflect the heterogeneity of nodes, edges, attributes and labels. To avoid the embedding over-assimilation among different types of nodes, we employ a label-aware neural similarity measure to ascertain the most similar neighbors based on node attributes. A reinforced relation-aware neighbor selection mechanism is developed to choose the most similar neighbors of a targeting node within a relation before aggregating all neighborhood information from different relations to obtain the eventual node embedding. Particularly, to improve the efficiency of neighbor selecting, we propose a new recursive and scalable reinforcement learning framework with estimable depth and width for different scales of multi-relational graphs. RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation via the filtering threshold mechanism.

rate research

Read More

Graph representation learning has achieved great success in many areas, including e-commerce, chemistry, biology, etc. However, the fundamental problem of choosing the appropriate dimension of node embedding for a given graph still remains unsolved. The commonly used strategies for Node Embedding Dimension Selection (NEDS) based on grid search or empirical knowledge suffer from heavy computation and poor model performance. In this paper, we revisit NEDS from the perspective of minimum entropy principle. Subsequently, we propose a novel Minimum Graph Entropy (MinGE) algorithm for NEDS with graph data. To be specific, MinGE considers both feature entropy and structure entropy on graphs, which are carefully designed according to the characteristics of the rich information in them. The feature entropy, which assumes the embeddings of adjacent nodes to be more similar, connects node features and link topology on graphs. The structure entropy takes the normalized degree as basic unit to further measure the higher-order structure of graphs. Based on them, we design MinGE to directly calculate the ideal node embedding dimension for any graph. Finally, comprehensive experiments with popular Graph Neural Networks (GNNs) on benchmark datasets demonstrate the effectiveness and generalizability of our proposed MinGE.
A neighborhood graph, which represents the instances as vertices and their relations as weighted edges, is the basis of many semi-supervised and relational models for node labeling and link prediction. Most methods employ a sequential process to construct the neighborhood graph. This process often consists of generating a candidate graph, pruning the candidate graph to make a neighborhood graph, and then performing inference on the variables (i.e., nodes) in the neighborhood graph. In this paper, we propose a framework that can dynamically adapt the neighborhood graph based on the states of variables from intermediate inference results, as well as structural properties of the relations connecting them. A key strength of our framework is its ability to handle multi-relational data and employ varying amounts of relations for each instance based on the intermediate inference results. We formulate the link prediction task as inference on neighborhood graphs, and include preliminary results illustrating the effects of different strategies in our proposed framework.
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs. In this paper, we study unsupervised training of GNN pooling in terms of their clustering capabilities. We start by drawing a connection between graph clustering and graph pooling: intuitively, a good graph clustering is what one would expect from a GNN pooling layer. Counterintuitively, we show that this is not true for state-of-the-art pooling methods, such as MinCut pooling. To address these deficiencies, we introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality, and show how it tackles recovery of the challenging clustering structure of real-world graphs. In order to clarify the regimes where existing methods fail, we carefully design a set of experiments on synthetic data which show that DMoN is able to jointly leverage the signal from the graph structure and node attributes. Similarly, on real-world data, we show that DMoN produces high quality clusters which correlate strongly with ground truth labels, achieving state-of-the-art results.
We consider the problem of learning Graph Convolutional Networks (GCNs) for relational data. Specifically, we consider the classic link prediction and node classification problems as relational modeling tasks and develop a relational extension to GCNs. Our method constructs a secondary graph using relational density estimation techniques where vertices correspond to the target triples. We emphasize the importance of learning features using the secondary graph and the advantages of employing a distance matrix over the typically used adjacency matrix. Our comprehensive empirical evaluation demonstrates the superiority of our approach over $mathbf{12}$ different GCN models, relational embedding techniques, rule learning techniques and relational models.
The pre-training on the graph neural network model can learn the general features of large-scale networks or networks of the same type by self-supervised methods, which allows the model to work even when node labels are missing. However, the existing pre-training methods do not take network evolution into consideration. This paper proposes a pre-training method on dynamic graph neural networks (PT-DGNN), which uses dynamic attributed graph generation tasks to simultaneously learn the structure, semantics, and evolution features of the graph. The method includes two steps: 1) dynamic sub-graph sampling, and 2) pre-training with dynamic attributed graph generation task. Comparative experiments on three realistic dynamic network datasets show that the proposed method achieves the best results on the link prediction fine-tuning task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا