Probing a Bose Metal via Electrons: Inescapable non-Fermi liquid scattering and pseudogap physics


Abstract in English

Non-Fermi liquid behavior and pseudogap formation are among the most well-known examples of exotic spectral features observed in several strongly correlated materials such as the hole-doped cuprates, nickelates, iridates, ruthenates, ferropnictides, doped Mott organics, transition metal dichalcogenides, heavy fermions, d- and f- electron metals, etc. We demonstrate that these features are inevitable consequences when fermions couple to an unconventional Bose metal [1] mean field consisting of lower-dimensional coherence. Not only do we find both exotic phenomena, but also a host of other features that have been observed e.g. in the cuprates including nodal anti-nodal dichotomy and pseudogap asymmetry(symmetry) in momentum(real) space. Obtaining these exotic and heretofore mysterious phenomena via a mean field offers a simple, universal, and therefore widely applicable explanation for their ubiquitous empirical appearance. [1] A. Hegg, J. Hou, and W. Ku, Bose metal via failed insulator: A novel phase of quantum matter, arXiv preprint arXiv:2101.06264 (2021).

Download