Do you want to publish a course? Click here

Reward Optimization for Neural Machine Translation with Learned Metrics

86   0   0.0 ( 0 )
 Added by Raphael Shu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Neural machine translation (NMT) models are conventionally trained with token-level negative log-likelihood (NLL), which does not guarantee that the generated translations will be optimized for a selected sequence-level evaluation metric. Multiple approaches are proposed to train NMT with BLEU as the reward, in order to directly improve the metric. However, it was reported that the gain in BLEU does not translate to real quality improvement, limiting the application in industry. Recently, it became clear to the community that BLEU has a low correlation with human judgment when dealing with state-of-the-art models. This leads to the emerging of model-based evaluation metrics. These new metrics are shown to have a much higher human correlation. In this paper, we investigate whether it is beneficial to optimize NMT models with the state-of-the-art model-based metric, BLEURT. We propose a contrastive-margin loss for fast and stable reward optimization suitable for large NMT models. In experiments, we perform automatic and human evaluations to compare models trained with smoothed BLEU and BLEURT to the baseline models. Results show that the reward optimization with BLEURT is able to increase the metric scores by a large margin, in contrast to limited gain when training with smoothed BLEU. The human evaluation shows that models trained with BLEURT improve adequacy and coverage of translations. Code is available via https://github.com/naver-ai/MetricMT.



rate research

Read More

Machine translation (MT) systems translate text between different languages by automatically learning in-depth knowledge of bilingual lexicons, grammar and semantics from the training examples. Although neural machine translation (NMT) has led the field of MT, we have a poor understanding on how and why it works. In this paper, we bridge the gap by assessing the bilingual knowledge learned by NMT models with phrase table -- an interpretable table of bilingual lexicons. We extract the phrase table from the training examples that an NMT model correctly predicts. Extensive experiments on widely-used datasets show that the phrase table is reasonable and consistent against language pairs and random seeds. Equipped with the interpretable phrase table, we find that NMT models learn patterns from simple to complex and distill essential bilingual knowledge from the training examples. We also revisit some advances that potentially affect the learning of bilingual knowledge (e.g., back-translation), and report some interesting findings. We believe this work opens a new angle to interpret NMT with statistic models, and provides empirical supports for recent advances in improving NMT models.
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art results for various translation tasks. However, Transformer-based NMT only adds representations of positions sequentially to word vectors in the input sentence and does not explicitly consider reordering information in this sentence. In this paper, we first empirically investigate the relationship between source reordering information and translation performance. The empirical findings show that the source input with the target order learned from the bilingual parallel dataset can substantially improve translation performance. Thus, we propose a novel reordering method to explicitly model this reordering information for the Transformer-based NMT. The empirical results on the WMT14 English-to-German, WAT ASPEC Japanese-to-English, and WMT17 Chinese-to-English translation tasks show the effectiveness of the proposed approach.
183 - Xu Tan , Jiale Chen , Di He 2019
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods
We describe Sockeye (version 1.12), an open-source sequence-to-sequence toolkit for Neural Machine Translation (NMT). Sockeye is a production-ready framework for training and applying models as well as an experimental platform for researchers. Written in Python and built on MXNet, the toolkit offers scalable training and inference for the three most prominent encoder-decoder architectures: attentional recurrent neural networks, self-attentional transformers, and fully convolutional networks. Sockeye also supports a wide range of optimizers, normalization and regularization techniques, and inference improvements from current NMT literature. Users can easily run standard training recipes, explore different model settings, and incorporate new ideas. In this paper, we highlight Sockeyes features and benchmark it against other NMT toolkits on two language arcs from the 2017 Conference on Machine Translation (WMT): English-German and Latvian-English. We report competitive BLEU scores across all three architectures, including an overall best score for Sockeyes transformer implementation. To facilitate further comparison, we release all system outputs and training scripts used in our experiments. The Sockeye toolkit is free software released under the Apache 2.0 license.
137 - Xu Tan , Yingce Xia , Lijun Wu 2019
The encoder-decoder based neural machine translation usually generates a target sequence token by token from left to right. Due to error propagation, the tokens in the right side of the generated sequence are usually of poorer quality than those in the left side. In this paper, we propose an efficient method to generate a sequence in both left-to-right and right-to-left manners using a single encoder and decoder, combining the advantages of both generation directions. Experiments on three translation tasks show that our method achieves significant improvements over conventional unidirectional approach. Compared with ensemble methods that train and combine two models with different generation directions, our method saves 50% model parameters and about 40% training time, and also improve inference speed.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا