Do you want to publish a course? Click here

Symbolic Time and Space Tradeoffs for Probabilistic Verification

83   0   0.0 ( 0 )
 Added by Alexander Svozil
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a faster symbolic algorithm for the following central problem in probabilistic verification: Compute the maximal end-component (MEC) decomposition of Markov decision processes (MDPs). This problem generalizes the SCC decomposition problem of graphs and closed recurrent sets of Markov chains. The model of symbolic algorithms is widely used in formal verification and model-checking, where access to the input model is restricted to only symbolic operations (e.g., basic set operations and computation of one-step neighborhood). For an input MDP with $n$ vertices and $m$ edges, the classical symbolic algorithm from the 1990s for the MEC decomposition requires $O(n^2)$ symbolic operations and $O(1)$ symbolic space. The only other symbolic algorithm for the MEC decomposition requires $O(n sqrt{m})$ symbolic operations and $O(sqrt{m})$ symbolic space. A main open question is whether the worst-case $O(n^2)$ bound for symbolic operations can be beaten. We present a symbolic algorithm that requires $widetilde{O}(n^{1.5})$ symbolic operations and $widetilde{O}(sqrt{n})$ symbolic space. Moreover, the parametrization of our algorithm provides a trade-off between symbolic operations and symbolic space: for all $0<epsilon leq 1/2$ the symbolic algorithm requires $widetilde{O}(n^{2-epsilon})$ symbolic operations and $widetilde{O}(n^{epsilon})$ symbolic space ($widetilde{O}$ hides poly-logarithmic factors). Using our techniques we present faster algorithms for computing the almost-sure winning regions of $omega$-regular objectives for MDPs. We consider the canonical parity objectives for $omega$-regular objectives, and for parity objectives with $d$-priorities we present an algorithm that computes the almost-sure winning region with $widetilde{O}(n^{2-epsilon})$ symbolic operations and $widetilde{O}(n^{epsilon})$ symbolic space, for all $0 < epsilon leq 1/2$.



rate research

Read More

We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an events occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the models dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling.
Petri games are a multiplayer game model for the automatic synthesis of distributed systems. We compare two fundamentally different approaches for solving Petri games. The symbolic approach decides the existence of a winning strategy via a reduction to a two-player game over a finite graph, which in turn is solved by a fixed point iteration based on binary decision diagrams (BDDs). The bounded synthesis approach encodes the existence of a winning strategy, up to a given bound on the size of the strategy, as a quantified Boolean formula (QBF). In this paper, we report on initial experience with a prototype implementation of the bounded synthesis approach. We compare bounded synthesis to the existing implementation of the symbolic approach in the synthesis tool ADAM. We present experimental results on a collection of benchmarks, including one new benchmark family, modeling manufacturing and workflow scenarios with multiple concurrent processes.
In recent years much effort has been concentrated towards achieving polynomial time lower bounds on algorithms for solving various well-known problems. A useful technique for showing such lower bounds is to prove them conditionally based on well-studied hardness assumptions such as 3SUM, APSP, SETH, etc. This line of research helps to obtain a better understanding of the complexity inside P. A related question asks to prove conditional space lower bounds on data structures that are constructed to solve certain algorithmic tasks after an initial preprocessing stage. This question received little attention in previous research even though it has potential strong impact. In this paper we address this question and show that surprisingly many of the well-studied hard problems that are known to have conditional polynomial time lower bounds are also hard when concerning space. This hardness is shown as a tradeoff between the space consumed by the data structure and the time needed to answer queries. The tradeoff may be either smooth or admit one or more singularity points. We reveal interesting connections between different space hardness conjectures and present matching upper bounds. We also apply these hardness conjectures to both static and dynamic problems and prove their conditional space hardness. We believe that this novel framework of polynomial space conjectures can play an important role in expressing polynomial space lower bounds of many important algorithmic problems. Moreover, it seems that it can also help in achieving a better understanding of the hardness of their corresponding problems in terms of time.
We present an industrial case study that demonstrates the practicality and effectiveness of Symbolic Quick Error Detection (Symbolic QED) in detecting logic design flaws (logic bugs) during pre-silicon verification. Our study focuses on several microcontroller core designs (~1,800 flip-flops, ~70,000 logic gates) that have been extensively verified using an industrial verification flow and used for various commercial automotive products. The results of our study are as follows: 1. Symbolic QED detected all logic bugs in the designs that were detected by the industrial verification flow (which includes various flavors of simulation-based verification and formal verification). 2. Symbolic QED detected additional logic bugs that were not recorded as detected by the industrial verification flow. (These additional bugs were also perhaps detected by the industrial verification flow.) 3. Symbolic QED enables significant design productivity improvements: (a) 8X improved (i.e., reduced) verification effort for a new design (8 person-weeks for Symbolic QED vs. 17 person-months using the industrial verification flow). (b) 60X improved verification effort for subsequent designs (2 person-days for Symbolic QED vs. 4-7 person-months using the industrial verification flow). (c) Quick bug detection (runtime of 20 seconds or less), together with short counterexamples (10 or fewer instructions) for quick debug, using Symbolic QED.
In top-down multi-level design methodologies, design descriptions at higher levels of abstraction are incrementally refined to the final realizations. Simulation based techniques have traditionally been used to verify that such model refinements do not change the design functionality. Unfortunately, with computer simulations it is not possible to completely check that a design transformation is correct in a reasonable amount of time, as the number of test patterns required to do so increase exponentially with the number of system state variables. In this paper, we propose a methodology for the verification of conformance of models generated at higher levels of abstraction in the design process to the design specifications. We model the system behavior using sequence of recurrence equations. We then use symbolic simulation together with equivalence checking and property checking techniques for design verification. Using our proposed method, we have verified the equivalence of three WiMax system models at different levels of design abstraction, and the correctness of various system properties on those models. Our symbolic modeling and verification experiments show that the proposed verification methodology provides performance advantage over its numerical counterpart.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا