Do you want to publish a course? Click here

Weakly Supervised Video Anomaly Detection via Center-guided Discriminative Learning

172   0   0.0 ( 0 )
 Added by Boyang Wan Mr
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Anomaly detection in surveillance videos is a challenging task due to the diversity of anomalous video content and duration. In this paper, we consider video anomaly detection as a regression problem with respect to anomaly scores of video clips under weak supervision. Hence, we propose an anomaly detection framework, called Anomaly Regression Net (AR-Net), which only requires video-level labels in training stage. Further, to learn discriminative features for anomaly detection, we design a dynamic multiple-instance learning loss and a center loss for the proposed AR-Net. The former is used to enlarge the inter-class distance between anomalous and normal instances, while the latter is proposed to reduce the intra-class distance of normal instances. Comprehensive experiments are performed on a challenging benchmark: ShanghaiTech. Our method yields a new state-of-the-art result for video anomaly detection on ShanghaiTech dataset



rate research

Read More

Anomaly detection with weakly supervised video-level labels is typically formulated as a multiple instance learning (MIL) problem, in which we aim to identify snippets containing abnormal events, with each video represented as a bag of video snippets. Although current methods show effective detection performance, their recognition of the positive instances, i.e., rare abnormal snippets in the abnormal videos, is largely biased by the dominant negative instances, especially when the abnormal events are subtle anomalies that exhibit only small differences compared with normal events. This issue is exacerbated in many methods that ignore important video temporal dependencies. To address this issue, we introduce a novel and theoretically sound method, named Robust Temporal Feature Magnitude learning (RTFM), which trains a feature magnitude learning function to effectively recognise the positive instances, substantially improving the robustness of the MIL approach to the negative instances from abnormal videos. RTFM also adapts dilated convolutions and self-attention mechanisms to capture long- and short-range temporal dependencies to learn the feature magnitude more faithfully. Extensive experiments show that the RTFM-enabled MIL model (i) outperforms several state-of-the-art methods by a large margin on four benchmark data sets (ShanghaiTech, UCF-Crime, XD-Violence and UCSD-Peds) and (ii) achieves significantly improved subtle anomaly discriminability and sample efficiency. Code is available at https://github.com/tianyu0207/RTFM.
162 - Jie Wu , Wei Zhang , Guanbin Li 2021
In this paper, we introduce a novel task, referred to as Weakly-Supervised Spatio-Temporal Anomaly Detection (WSSTAD) in surveillance video. Specifically, given an untrimmed video, WSSTAD aims to localize a spatio-temporal tube (i.e., a sequence of bounding boxes at consecutive times) that encloses the abnormal event, with only coarse video-level annotations as supervision during training. To address this challenging task, we propose a dual-branch network which takes as input the proposals with multi-granularities in both spatial-temporal domains. Each branch employs a relationship reasoning module to capture the correlation between tubes/videolets, which can provide rich contextual information and complex entity relationships for the concept learning of abnormal behaviors. Mutually-guided Progressive Refinement framework is set up to employ dual-path mutual guidance in a recurrent manner, iteratively sharing auxiliary supervision information across branches. It impels the learned concepts of each branch to serve as a guide for its counterpart, which progressively refines the corresponding branch and the whole framework. Furthermore, we contribute two datasets, i.e., ST-UCF-Crime and STRA, consisting of videos containing spatio-temporal abnormal annotations to serve as the benchmarks for WSSTAD. We conduct extensive qualitative and quantitative evaluations to demonstrate the effectiveness of the proposed approach and analyze the key factors that contribute more to handle this task.
Anomaly detection in video is a challenging computer vision problem. Due to the lack of anomalous events at training time, anomaly detection requires the design of learning methods without full supervision. In this paper, we approach anomalous event detection in video through self-supervised and multi-task learning at the object level. We first utilize a pre-trained detector to detect objects. Then, we train a 3D convolutional neural network to produce discriminative anomaly-specific information by jointly learning multiple proxy tasks: three self-supervised and one based on knowledge distillation. The self-supervised tasks are: (i) discrimination of forward/backward moving objects (arrow of time), (ii) discrimination of objects in consecutive/intermittent frames (motion irregularity) and (iii) reconstruction of object-specific appearance information. The knowledge distillation task takes into account both classification and detection information, generating large prediction discrepancies between teacher and student models when anomalies occur. To the best of our knowledge, we are the first to approach anomalous event detection in video as a multi-task learning problem, integrating multiple self-supervised and knowledge distillation proxy tasks in a single architecture. Our lightweight architecture outperforms the state-of-the-art methods on three benchmarks: Avenue, ShanghaiTech and UCSD Ped2. Additionally, we perform an ablation study demonstrating the importance of integrating self-supervised learning and normality-specific distillation in a multi-task learning setting.
Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process. A side effect of data imbalance occurs when a few abnormal data face a vast number of normal data. The latest VAD works use triplet loss or data re-sampling strategy to lessen this problem. However, there is still no elaborately designed structure for discriminative VAD with a few anomalies. In this paper, we propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance. We use two shallow discriminators to tighten the normal feature distribution boundary along with a generator for the next frame prediction. Further, we propose a dual memory module to obtain a sparse feature representation in both normality and abnormality space. As a result, DREAM not only solves the data imbalance problem but also learn a reasonable feature space. Further theoretical analysis shows that our DREAM also works for the unknown anomalies. Comparing with the previous methods on UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech, our model outperforms all the baselines with no extra parameters. The ablation study demonstrates the effectiveness of our dual memory module and discriminative-generative network.
179 - Wangbo Zhao , Jing Zhang , Long Li 2021
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we present the first weakly supervised video salient object detection model based on relabeled fixation guided scribble annotations. Specifically, an Appearance-motion fusion module and bidirectional ConvLSTM based framework are proposed to achieve effective multi-modal learning and long-term temporal context modeling based on our new weak annotations. Further, we design a novel foreground-background similarity loss to further explore the labeling similarity across frames. A weak annotation boosting strategy is also introduced to boost our model performance with a new pseudo-label generation technique. Extensive experimental results on six benchmark video saliency detection datasets illustrate the effectiveness of our solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا